面试题:HashMap扩容机制

扩容机制

1.什么时候才需要扩容
  • 在首次调用put方法的时候,初始化数组table

  • 当HashMap中的元素个数超过数组大小(数组长度)*loadFactor(负载因子)时,就会进行数组扩容,loadFactor的默认值(DEFAULT_LOAD_FACTOR)是0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中的元素个数超过16×0.75=12(这个值就是阈值或者边界值threshold值)的时候,就把数组的大小扩展为2×16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预知元素的个数能够有效的提高HashMap的性能。

  • 当HashMap中的其中一个链表的对象个数如果达到了8个,此时如果数组长度没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链表会变成红黑树,节点类型由Node变成TreeNode类型。当然,如果映射关系被移除后,下次执行resize方法时判断树的节点个数低于6,也会再把树转换为链表。

2.HashMap的扩容是什么

进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。

怎么理解呢?例如我们从16扩展为32时,具体的变化如下所示:

image-20191117110812839

因此元素在重新计算hash之后,因为n变为2倍,那么n-1的标记范围在高位多1bit(红色),因此新的index就会发生这样的变化:

image-20191117110934974

说明:5是假设计算出来的原来的索引。这样就验证了上述所描述的:扩容之后所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。

因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就可以了,是0的话索引没变,是1的话索引变成“原索引+oldCap(原位置+旧容量)”。可以看看下图为16扩充为32的resize示意图:

image-20191117111211630

正是因为这样巧妙的rehash方式,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,在resize的过程中保证了rehash之后每个桶上的节点数一定小于等于原来桶上的节点数,保证了rehash之后不会出现更严重的hash冲突,均匀的把之前的冲突的节点分散到新的桶中了。

3. 源码resize方法的解读

下面是代码的具体实现:

final Node<K,V>[] resize() {
    //得到当前数组
    Node<K,V>[] oldTab = table;
    //如果当前数组等于null长度返回0,否则返回当前数组的长度
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    //当前阀值点 默认是12(16*0.75)
    int oldThr = threshold;
    int newCap, newThr = 0;
    //如果老的数组长度大于0
    //开始计算扩容后的大小
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            //修改阈值为int的最大值
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        /*
        	没超过最大值,就扩充为原来的2倍
        	1)(newCap = oldCap << 1) < MAXIMUM_CAPACITY 扩大到2倍之后容量要小于最大容量
        	2)oldCap >= DEFAULT_INITIAL_CAPACITY 原数组长度大于等于数组初始化长度16
        */
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            //阈值扩大一倍
            newThr = oldThr << 1; // double threshold
    }
    //老阈值点大于0 直接赋值
    else if (oldThr > 0) // 老阈值赋值给新的数组长度
        newCap = oldThr;
    else {// 直接使用默认值
        newCap = DEFAULT_INITIAL_CAPACITY;//16
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize最大上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    //新的阀值 默认原来是12 乘以2之后变为24
    threshold = newThr;
    //创建新的哈希表
    @SuppressWarnings({"rawtypes","unchecked"})
    //newCap是新的数组长度--》32
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    //判断旧数组是否等于空
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        //遍历旧的哈希表的每个桶,重新计算桶里元素的新位置
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                //原来的数据赋值为null 便于GC回收
                oldTab[j] = null;
                //判断数组是否有下一个引用
                if (e.next == null)
                    //没有下一个引用,说明不是链表,当前桶上只有一个键值对,直接插入
                    newTab[e.hash & (newCap - 1)] = e;
                //判断是否是红黑树
                else if (e instanceof TreeNode)
                    //说明是红黑树来处理冲突的,则调用相关方法把树分开
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // 采用链表处理冲突
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    //通过上述讲解的原理来计算节点的新位置
                    do {
                        // 原索引
                        next = e.next;
                     	//这里来判断如果等于true e这个节点在resize之后不需要移动位置
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
原文地址:https://www.cnblogs.com/dalianpai/p/14297529.html