基于直接最小二乘的椭圆拟合(Direct Least Squares Fitting of Ellipses)

算法思想:

算法通过最小化约束条件4ac-b^2 = 1,最小化距离误差。利用最小二乘法进行求解,首先引入拉格朗日乘子算法获得等式组,然后求解等式组得到最优的拟合椭圆。

算法的优点:

  a、椭圆的特异性,在任何噪声或者遮挡的情况下都会给出一个有用的结果;

  b、不变性,对数据的Euclidean变换具有不变性,即数据进行一系列的Euclidean变换也不会导致拟合结果的不同;

  c、对噪声具有很高的鲁棒性;

  d、计算高效性。

算法原理:

 

代码实现(Matlab):

  1 %
  2 function a = fitellipse(X,Y)
  3 
  4 % FITELLIPSE  Least-squares fit of ellipse to 2D points.
  5 %        A = FITELLIPSE(X,Y) returns the parameters of the best-fit
  6 %        ellipse to 2D points (X,Y).
  7 %        The returned vector A contains the center, radii, and orientation
  8 %        of the ellipse, stored as (Cx, Cy, Rx, Ry, theta_radians)
  9 %
 10 % Authors: Andrew Fitzgibbon, Maurizio Pilu, Bob Fisher
 11 % Reference: "Direct Least Squares Fitting of Ellipses", IEEE T-PAMI, 1999
 12 %
 13 %  @Article{Fitzgibbon99,
 14 %   author = "Fitzgibbon, A.~W.and Pilu, M. and Fisher, R.~B.",
 15 %   title = "Direct least-squares fitting of ellipses",
 16 %   journal = pami,
 17 %   year = 1999,
 18 %   volume = 21,
 19 %   number = 5,
 20 %   month = may,
 21 %   pages = "476--480"
 22 %  }
 23 % 
 24 % This is a more bulletproof version than that in the paper, incorporating
 25 % scaling to reduce roundoff error, correction of behaviour when the input 
 26 % data are on a perfect hyperbola, and returns the geometric parameters
 27 % of the ellipse, rather than the coefficients of the quadratic form.
 28 %
 29 %  Example:  Run fitellipse without any arguments to get a demo
 30 if nargin == 0
 31   % Create an ellipse
 32   t = linspace(0,2);
 33   
 34   Rx = 300;
 35   Ry = 200;
 36   Cx = 250;
 37   Cy = 150;
 38   Rotation = .4; % Radians
 39   
 40   NoiseLevel = .5; % Will add Gaussian noise of this std.dev. to points
 41   
 42   x = Rx * cos(t);
 43   y = Ry * sin(t);
 44   nx = x*cos(Rotation)-y*sin(Rotation) + Cx + randn(size(t))*NoiseLevel; 
 45   ny = x*sin(Rotation)+y*cos(Rotation) + Cy + randn(size(t))*NoiseLevel;
 46   
 47   % Clear figure
 48   clf
 49   % Draw it
 50   plot(nx,ny,'o');
 51   % Show the window
 52   figure(gcf)
 53   % Fit it
 54   params = fitellipse(nx,ny);
 55   % Note it may return (Rotation - pi/2) and swapped radii, this is fine.
 56   Given = round([Cx Cy Rx Ry Rotation*180])
 57   Returned = round(params.*[1 1 1 1 180])
 58   
 59   % Draw the returned ellipse
 60   t = linspace(0,pi*2);
 61   x = params(3) * cos(t);
 62   y = params(4) * sin(t);
 63   nx = x*cos(params(5))-y*sin(params(5)) + params(1); 
 64   ny = x*sin(params(5))+y*cos(params(5)) + params(2);
 65   hold on
 66   plot(nx,ny,'r-')
 67   
 68   return
 69 end
 70 
 71 % normalize data
 72 mx = mean(X);
 73 my = mean(Y);
 74 sx = (max(X)-min(X))/2;
 75 sy = (max(Y)-min(Y))/2; 
 76 
 77 x = (X-mx)/sx;
 78 y = (Y-my)/sy;
 79 
 80 % Force to column vectors
 81 x = x(:);
 82 y = y(:);
 83 
 84 % Build design matrix
 85 D = [ x.*x  x.*y  y.*y  x  y  ones(size(x)) ];
 86 
 87 % Build scatter matrix
 88 S = D'*D;
 89 
 90 % Build 6x6 constraint matrix
 91 C(6,6) = 0; C(1,3) = -2; C(2,2) = 1; C(3,1) = -2;
 92 
 93 % Solve eigensystem
 94 if 0
 95   % Old way, numerically unstable if not implemented in matlab
 96   [gevec, geval] = eig(S,C);
 97 
 98   % Find the negative eigenvalue
 99   I = find(real(diag(geval)) < 1e-8 & ~isinf(diag(geval)));
100   
101   % Extract eigenvector corresponding to negative eigenvalue
102   A = real(gevec(:,I));
103 else
104   % New way, numerically stabler in C [gevec, geval] = eig(S,C);
105   
106   % Break into blocks
107   tmpA = S(1:3,1:3); 
108   tmpB = S(1:3,4:6); 
109   tmpC = S(4:6,4:6); 
110   tmpD = C(1:3,1:3);
111   tmpE = inv(tmpC)*tmpB';
112   [evec_x, eval_x] = eig(inv(tmpD) * (tmpA - tmpB*tmpE));
113   
114   % Find the positive (as det(tmpD) < 0) eigenvalue
115   I = find(real(diag(eval_x)) < 1e-8 & ~isinf(diag(eval_x)));
116   
117   % Extract eigenvector corresponding to negative eigenvalue
118   A = real(evec_x(:,I));
119   
120   % Recover the bottom half...
121   evec_y = -tmpE * A;
122   A = [A; evec_y];
123 end
124 
125 % unnormalize
126 par = [
127   A(1)*sy*sy,   ...
128       A(2)*sx*sy,   ...
129       A(3)*sx*sx,   ...
130       -2*A(1)*sy*sy*mx - A(2)*sx*sy*my + A(4)*sx*sy*sy,   ...
131       -A(2)*sx*sy*mx - 2*A(3)*sx*sx*my + A(5)*sx*sx*sy,   ...
132       A(1)*sy*sy*mx*mx + A(2)*sx*sy*mx*my + A(3)*sx*sx*my*my   ...
133       - A(4)*sx*sy*sy*mx - A(5)*sx*sx*sy*my   ...
134       + A(6)*sx*sx*sy*sy   ...
135       ]';
136 
137 % Convert to geometric radii, and centers
138 
139 thetarad = 0.5*atan2(par(2),par(1) - par(3));
140 cost = cos(thetarad);
141 sint = sin(thetarad);
142 sin_squared = sint.*sint;
143 cos_squared = cost.*cost;
144 cos_sin = sint .* cost;
145 
146 Ao = par(6);
147 Au =   par(4) .* cost + par(5) .* sint;
148 Av = - par(4) .* sint + par(5) .* cost;
149 Auu = par(1) .* cos_squared + par(3) .* sin_squared + par(2) .* cos_sin;
150 Avv = par(1) .* sin_squared + par(3) .* cos_squared - par(2) .* cos_sin;
151 
152 % ROTATED = [Ao Au Av Auu Avv]
153 
154 tuCentre = - Au./(2.*Auu);
155 tvCentre = - Av./(2.*Avv);
156 wCentre = Ao - Auu.*tuCentre.*tuCentre - Avv.*tvCentre.*tvCentre;
157 
158 uCentre = tuCentre .* cost - tvCentre .* sint;
159 vCentre = tuCentre .* sint + tvCentre .* cost;
160 
161 Ru = -wCentre./Auu;
162 Rv = -wCentre./Avv;
163 
164 Ru = sqrt(abs(Ru)).*sign(Ru);
165 Rv = sqrt(abs(Rv)).*sign(Rv);
166 
167 a = [uCentre, vCentre, Ru, Rv, thetarad];

实验效果:

 a、同等噪声条件下,不同长度的样本点,导致的拟合结果,如下所示:

 

b、相同长度的样本点下,不同噪声的样本点,导致的拟合结果,如下所示:

c、少样本点下,拟合结果如下:

源码下载:

      地址: FitEllipse

参考文献:

[1]. Andrew W. Fitzgibbon, Maurizio Pilu and Robert B. Fisher. Direct Least Squares Fitting of Ellipses. 1996.

[2]. http://research.microsoft.com/en-us/um/people/awf/ellipse/

原文地址:https://www.cnblogs.com/cv-pr/p/4625122.html