HDU 2588 GCD && GCD问题总结

                                                                                                             GCD(一)

题目:

 The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.

   求满足题目要求的x个数。

算法:

   直接筛选会超时,依据题目给出的不等式特点GCD(x,N) >= M 能够知道满足题目要求的一定是N的因子并且必须大于等于M(想想为什么?解体关键)。所以,仅仅要枚举N的大于等于M的因子就能够了。

由于,在10^9内最多的因子数不超过30个。

所以,总时间是O(30*loglogn)接近常数。

 

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

typedef __int64 LL;
const int MOD = 1000000007;

int euler_phi(int n){
    int k = (int)sqrt(n + 0.5);
    int ans = n;
    for(int i = 2;i <= k;++i) if(0 == n % i){
        ans = ans / i * (i - 1);
        while(0 == n % i) n /= i;
    }

    if(n > 1) ans = ans / n * (n - 1);
    return ans;
}

LL getFact(int n,int m){
    LL res = 0;
    int k = sqrt(n + 0.5);
    int tmp;

    for(int i = 1;i <= k;++i){
        if(0 == n % i){
            tmp = n / i;
            if(i >= m) res += euler_phi(n / i);
            if(tmp >= m && i != tmp) res += euler_phi(n / tmp);
        }
    }
    return res;
}



int main()
{
    int T,n,m;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);

        if(n == 1 && m == 1){
            puts("1");
            continue;
        }

        printf("%I64d
",getFact(n,m));
    }
    return 0;
}


 

  

                                GCD(二)

题目:

   给你一个数N,使得在1~N之间可以找到x使得x满足gcd( x ,  N  ) >= M,求解gcd(x,N)的和。

算法:

  由上题的知识能够知道,1...N的互质个数为欧拉函数值且其gcd仅仅能是N的因子。

所以,对于N = x * y。

我们仅仅要

求出x在y内的互质个数就好了,结果乘以x就是gcd = x的和了.

证明:

   SUM(gcd = x ) = 1*x + 2*x + 3*x ..... y*x

  所以。当gcd = x的时候仅仅要求出y的欧拉函数值就好了。

 

而一个数的因子又能够在sqrt(N)内求出。

 

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

typedef long long LL;

int euler_phi(int n){
    int m = sqrt(n + 0.5);
    int ans = n;
    for(int i = 2;i <= m;++i) if(0 == n % i){
        ans = ans / i * (i - 1);
        while(0 == n % i) n /= i;
    }
    if(n > 1) ans = ans / n * (n - 1);

    return ans;
}

LL solve(int n,int m){
   LL res = 0;
   int k = sqrt(n + 0.5);
   for(int i = 1;i <= k;++i){
       if(0 == n % i){
           if(i >= m)
              res += i * euler_phi(n / i);
           if(i != n / i && n / i >= m)
              res += n / i * euler_phi(i);
       }
   }
   return res;
}

int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m)){
        printf("%lld
",solve(n,m));
    }
    return 0;
}


 

                                                                                                  GCD(三)

 

题目:

    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M,please answer sum of  X satisfies 1<=X<=N and (X,N)>=M.

 

算法:

   跟GCD(一)不同的是这题求得是满足gcd(x,n) >= m 。x的和。而由欧拉函数中的一个定理能够知道

所以。仅仅要SUM(n = x * y) = y*α(y) / 2 * x 

由于要的是x的和。而我们是在把X先进行X / x处理的所以最后要在乘回上x得到原值。

 
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

typedef long long LL;
const int MOD = 1000000007;

int euler_phi(int n){
    int k = (int)sqrt(n + 0.5);
    int ans = n;
    for(int i = 2;i <= k;++i) if(0 == n % i){
        ans = ans / i * (i - 1);
        while(0 == n % i) n /= i;
    }

    if(n > 1) ans = ans / n * (n - 1);
    return ans;
}

LL getFact(int n,int m){
    LL res = 0;
    int k = sqrt(n + 0.5);
    LL tmp;

    for(int i = 1;i <= k;++i){
        if(0 == n % i){
            tmp = n / i;
            if(i >= m){
                LL t1 = tmp * euler_phi(tmp) / 2 % MOD;
                t1 = t1 ? t1 : 1;
                res = (res + t1 * i) % MOD;
            }
            if(tmp >= m && i != tmp) {
                LL t1 = i * euler_phi(i) / 2 % MOD;
                t1 = t1 ?

t1 : 1; res = (res + t1 * tmp) % MOD; } } } return res >= MOD ? res%MOD : res; } int main() { int T,n,m; scanf("%d",&T); while(T--){ scanf("%d%d",&n,&m); printf("%lld ",getFact(n,m)); } return 0; }

原文地址:https://www.cnblogs.com/blfbuaa/p/6768573.html