二叉树的基本操作

说明

二叉树的基本操作: 递归建立和非递归建立、遍历二叉树、求树高。

C程序实现

#include "iostream"  
#include "malloc.h"  
using namespace std;  

#define Maxsize 1024  

typedef char datatype;  
typedef struct node  
{  
    datatype data;  
    struct node*lchild,*rchild;  
}bitree;  


bitree*CreatTree()//非递归的方式建立完全二叉树  
{  
    cout<<"连续输入字符建立完全二叉树,并以‘#’结束"<<endl;  
    char ch;  
    bitree*Q[Maxsize];  
    int front,rear;  
    bitree*root,*s;  
    root=NULL;  
    front=1,rear=0;  
    while ((ch=getchar())!='#')  
    {  
        s=NULL;  
        s=(bitree*)malloc(sizeof(bitree));  
        s->data=ch;  
        s->lchild=NULL;  
        s->rchild=NULL;  
        rear++;  
        Q[rear]=s;  

        if (rear==1)  
            root=s;  
        else  
        {  
            if(s&&Q[front])  
            {  
                if(rear%2==0)  
                    Q[front]->lchild=s;  
                else  
                    Q[front]->rchild=s;  
            }  
            if(rear%2==1)  
                front++;  
        }  
    }  
    return root;  
}  

bitree *CreatTree2(int i,int n)//定义的方式建立完全二叉树  
                               //不够通用,仅提供一种参考  
{  
    bitree *root;  
    root=(bitree*)malloc(sizeof(bitree));  
    root->data=i;  
    if(2*i<=n)              //若2*i<=n,那么tree的左孩子为tree[2*i];  
        root->lchild=CreatTree2(2*i,n);  
    else  
        root->lchild=NULL;  
    if(2*i+1<=n)//若2*i+1<=n,那么tree的右孩子为tree[2*i+1];  
        root ->rchild=CreatTree2(2*i+1,n);  
    else  
        root->rchild=NULL;  
    return root;  
}  


void PreOrder(bitree*p)//前序递归遍历  
{  
    if (p!=NULL)  
    {  
        cout<<"->"<<p->data;  
        PreOrder(p->lchild);  
        PreOrder(p->rchild);  
    }  
}  


void InOrder(bitree*p)//中序递归遍历  
{  
    if (p!=NULL)  
    {  
        InOrder(p->lchild);  
        cout<<"->"<<p->data;  
        InOrder(p->rchild);  
    }  
}  

void NinOrder(bitree*p)//非递归的中序遍历,其他两种非递归遍历诸君自己实现  
{  
    bitree*stack[Maxsize];  
    bitree*s=p;  
    int top=-1;  
    while (top!=-1||s!=NULL)  
    {  
        while (s!=NULL)  
        {  
            if (top==Maxsize-1)  
            {  
                cout<<"OVERFLOW";  
                return;  
            }  
            else  
            {  
                top++;  
                stack[top]=s;  
                s=s->lchild;  
            }  
        }  
        s=stack[top];  
        top--;  
        cout<<s->data;  
        s=s->rchild;  
    }  
}  

void PostOrder(bitree*p)//后序递归遍历  
{  
    if (p!=NULL)  
    {  
        PostOrder(p->lchild);  
        PostOrder(p->rchild);  
        cout<<"->"<<p->data;  
    }  
}  


void Layer(bitree*p)//用队列实现广度优先遍历  
{  
    bitree*Q[Maxsize];  
    bitree*s;  
    int rear=1,front=0;  
    Q[rear]=p;  
    while (front<rear)  
    {  
        front++;  
        s=Q[front];  
        cout<<"->"<<s->data;  
        if (s->lchild!=NULL)  
        {  
            rear++;  
            Q[rear]=s->lchild;  
        }  
        if (s->rchild!=NULL)  
        {  
            rear++;  
            Q[rear]=s->rchild;  
        }  
    }  
}  


int CountLeaf(bitree*p)//计算叶子节点数目  
{  
    if(!p)  
        return 0;  
    else if(!p->lchild&&!p->rchild)  
        return 1;  
    else  
        return CountLeaf(p->lchild)+CountLeaf(p->rchild);  
}  

int Height(bitree*p)//计算数的高度  
{  
    int lc,rc;  
    if(p==NULL)  
        return 0;  
    lc=Height(p->lchild)+1;  
    rc=Height(p->rchild)+1;  
    return lc>rc?lc:rc;  
}  

int main()  
{  
    bitree*p;  
    int leaf,height;  

    p=CreatTree();  

    cout<<"深度优先遍历如下所示"<<endl<<endl;;  

    cout<<"    前序遍历为";  
    PreOrder(p);  
    cout<<endl<<endl;  

    cout<<"    中序遍历为";  
    InOrder(p);  
    cout<<endl<<endl;  

    cout<<"    后序遍历为";  
    PostOrder(p);  
    cout<<endl<<endl;  

    cout<<"广度优先遍历为";  
    Layer(p);  
    cout<<endl<<endl;  

    leaf=CountLeaf(p);  
    cout<<"叶子数目为:"<<leaf<<endl<<endl;  
    height=Height(p);  
    cout<<"数的高度为:"<<height<<endl<<endl;  

    return 0;  
}  
原文地址:https://www.cnblogs.com/actanble/p/6713433.html