Crash的数字表格

Crash的数字表格

(sum_{i=1}^Nsum_{j=1}^Mlcm(i,j),n,mleq 10^7)

(N<M),显然有

[sum_{i=1}^Nsum_{j=1}^Mfrac{ij}{gcd(i,j)}=sum_{d=1}^Nfrac{1}{d}sum_{i=1}^Nsum_{j=1}^Mij(gcd(i,j)==d) ]

[f(k)=sum_{i=1}^Nsum_{j=1}^Mij(gcd(i,j)==k) ]

[F(k)=sum_{i=1}^{N}sum_{j=1}^Mij(k|gcd(i,j))=k^2sum_{i=1}^{[N/k]}sum_{j=1}^{[M/k]}ij ]

(dc[k]=sum_{i=1}^ki=frac{(1+k) imes k}{2},F(k)=k^2dc(N/k)dc(M/k))

由Mobius反演定理我们有

[f(k)=sum_{k|d}F(d)mu(d/k) ]

代入有

[ans=sum_{d=1}^Nfrac{1}{d}sum_{d|x}^{}x^2dc(N/x)dc(M/x)mu(x/d)= ]

[sum_{d=1}^Ndsum_{x=1}^{[N/d]}dc(N/xd)dc(M/xd)x^2mu(x) ]

维护出后式(x^2mu(x)),两次整除分块即可,不难得知时间复杂度(O(n))

顺便提一下,如果(N,M)很小,我们可以变成一下形式,变为(O(nlogn+Tsqrt{n}))(T为询问组数)。

[sum_{x=1}^Ndc(N/x)dc(M/x)sum_{d|x}mu(x/d)frac{x^2}{d} ]

参考代码:

#include <iostream>
#include <cstdio>
#define il inline
#define ri register
#define ll long long
#define yyb 20101009
#define swap(x,y) x^=y^=x^=y
using namespace std;
bool check[10000001];
int prime[750000],pt,mb[10000001];
void prepare(int);
il int min(int,int),dx(int,int);
int main(){
    int n,m,nd,md,ndx,mdx,i,ij,j,
        jj,ans1(0),ans2;
    scanf("%d%d",&n,&m);
    if(n>m)swap(n,m);prepare(m);
    for(i=1;i<=n;i=ij+1){
        ij=min(n/(n/i),m/(m/i));
        ans2&=0,nd=n/i,md=m/i;
        for(j=1;j<=nd;j=jj+1)
            jj=min(nd/(nd/j),md/(md/j)),
                (ans2+=(ll)(mb[jj]-mb[j-1])*dx(1,nd/j)%yyb*dx(1,md/j)%yyb)%=yyb;
        (ans1+=(ll)ans2*dx(i,ij)%yyb)%=yyb;
    }printf("%d",(ans1+yyb)%yyb);
    return 0;
}
il int dx(int a,int b){
    return (ll)(a+b)*(b-a+1)/2%yyb;
}
void prepare(int n){
    int i,j;check[1]|=mb[1]|=true;
    for(i=2;i<=n;++i){
        if(!check[i])prime[++pt]=i,mb[i]=-1;
        for(j=1;j<=pt&&prime[j]<=n/i;++j){
            check[i*prime[j]]|=true;
            if(!(i%prime[j]))break;
            mb[i*prime[j]]=-mb[i];
        }
    }for(i=1;i<=n;++i)mb[i]=((ll)mb[i]*i%yyb*i+mb[i-1])%yyb;
}
il int min(int a,int b){
    return a<b?a:b;
}

原文地址:https://www.cnblogs.com/a1b3c7d9/p/10793938.html