无监督学习包含算法

  • 聚类
    • K-means(K均值聚类)
  • 降维
    • PCA

K-means原理

我们先来看一下一个K-means的聚类效果图

K-means聚类步骤

  • 1、随机设置K个特征空间内的点作为初始的聚类中心
  • 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
  • 3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
  • 4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步过程

我们以一张图来解释效果

K-meansAPI

  • sklearn.cluster.KMeans(n_clusters=8,init=‘k-means++’)
    • k-means聚类
    • n_clusters:开始的聚类中心数量
    • init:初始化方法,默认为'k-means ++’
    • labels_:默认标记的类型,可以和真实值比较(不是值比较)

案例:k-means对Instacart Market用户聚类

分析

  • 1、降维之后的数据
  • 2、k-means聚类
  • 3、聚类结果显示
data_new

#预估器流程
from sklearn.cluster import KMeans

estimator = KMeans(n_clusters=3)
estimator.fit(data_new)

y_predict = estimator.predict(data_new)
y_predict[:300]

#模型评估 - 轮廓系数
from sklearn.metrics import silhouette_score

silhouette_score(data_new, y_predict)

如何去评估聚类的效果呢?

Kmeans性能评估指标

轮廓系数

 注:对于每个点i 为已聚类数据中的样本 ,b_i 为i 到其它族群的所有样本的距离最小值,a_i 为i 到本身簇的距离平均值。最终计算出所有的样本点的轮廓系数平均值

轮廓系数值分析

分析过程(我们以一个蓝1点为例)

  • 1、计算出蓝1离本身族群所有点的距离的平均值a_i

  • 2、蓝1到其它两个族群的距离计算出平均值红平均,绿平均,取最小的那个距离作为b_i

  • 根据公式:极端值考虑:如果b_i >>a_i: 那么公式结果趋近于1;如果a_i>>>b_i: 那么公式结果趋近于-1

结论

如果b_i>>a_i:趋近于1效果越好, b_i<<a_i:趋近于-1,效果不好。轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。

轮廓系数API

sklearn.metrics.silhouette_score(X, labels)

  • 计算所有样本的平均轮廓系数
  • X:特征值
  • labels:被聚类标记的目标值

K-means总结

  • 特点分析:采用迭代式算法,直观易懂并且非常实用
  • 缺点:容易收敛到局部最优解(多次聚类)
原文地址:https://www.cnblogs.com/a155-/p/14416743.html