《剑指offer》第三十六题:二叉搜索树与双向链表

// 面试题36:二叉搜索树与双向链表
// 题目:输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求
// 不能创建任何新的结点,只能调整树中结点指针的指向。

#include <cstdio>
#include "BinaryTree.h"

void ConvertNode(BinaryTreeNode* pNode, BinaryTreeNode** pLastNodeInList);

BinaryTreeNode* Convert(BinaryTreeNode* pRootOfTree)
{
    BinaryTreeNode* pLastNodeInList = nullptr; //链表中最后一位
    ConvertNode(pRootOfTree, &pLastNodeInList); //核心函数

    //从链表尾返回链表头,
    BinaryTreeNode* pHeadOfList = pLastNodeInList;
    while (pHeadOfList != nullptr && pHeadOfList->m_pLeft != nullptr)
        pHeadOfList = pHeadOfList->m_pLeft;
    return pHeadOfList;
}

//函数需要手推一遍,在纸上画图
void ConvertNode(BinaryTreeNode* pNode, BinaryTreeNode** pLastNodeInList)
{
    if (pNode == nullptr)
        return;

    BinaryTreeNode* pCurrent = pNode; //当前节点

    if (pCurrent->m_pLeft != nullptr) //中序遍历
        ConvertNode(pCurrent->m_pLeft, pLastNodeInList);

    //当前节点和链表中最后一个节点(上一个处理完的节点)商业互连
    pCurrent->m_pLeft = *pLastNodeInList;
    if (*pLastNodeInList != nullptr) //此时考虑链表为空
        (*pLastNodeInList)->m_pRight = pCurrent;

    *pLastNodeInList = pCurrent; //更新链表中最后一个节点

    if (pCurrent->m_pRight != nullptr) //处理右子节点
        ConvertNode(pCurrent->m_pRight, pLastNodeInList);
}
// ====================测试代码====================
void PrintDoubleLinkedList(BinaryTreeNode* pHeadOfList)
{
    BinaryTreeNode* pNode = pHeadOfList;

    printf("The nodes from left to right are:
");
    while (pNode != nullptr)
    {
        printf("%d	", pNode->m_nValue);

        if (pNode->m_pRight == nullptr)
            break;
        pNode = pNode->m_pRight;
    }

    printf("
The nodes from right to left are:
");
    while (pNode != nullptr)
    {
        printf("%d	", pNode->m_nValue);

        if (pNode->m_pLeft == nullptr)
            break;
        pNode = pNode->m_pLeft;
    }

    printf("
");
}

void DestroyList(BinaryTreeNode* pHeadOfList)
{
    BinaryTreeNode* pNode = pHeadOfList;
    while (pNode != nullptr)
    {
        BinaryTreeNode* pNext = pNode->m_pRight;

        delete pNode;
        pNode = pNext;
    }
}

void Test(const char* testName, BinaryTreeNode* pRootOfTree)
{
    if (testName != nullptr)
        printf("%s begins:
", testName);

    PrintTree(pRootOfTree);

    BinaryTreeNode* pHeadOfList = Convert(pRootOfTree);

    PrintDoubleLinkedList(pHeadOfList);
}

//            10
//         /      
//        6        14
//       /        /
//      4  8     12  16
void Test1()
{
    BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
    BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
    BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
    BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
    BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
    BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
    BinaryTreeNode* pNode16 = CreateBinaryTreeNode(16);

    ConnectTreeNodes(pNode10, pNode6, pNode14);
    ConnectTreeNodes(pNode6, pNode4, pNode8);
    ConnectTreeNodes(pNode14, pNode12, pNode16);

    Test("Test1", pNode10);

    DestroyList(pNode4);
}

//               5
//              /
//             4
//            /
//           3
//          /
//         2
//        /
//       1
void Test2()
{
    BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
    BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
    BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
    BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
    BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);

    ConnectTreeNodes(pNode5, pNode4, nullptr);
    ConnectTreeNodes(pNode4, pNode3, nullptr);
    ConnectTreeNodes(pNode3, pNode2, nullptr);
    ConnectTreeNodes(pNode2, pNode1, nullptr);

    Test("Test2", pNode5);

    DestroyList(pNode1);
}

// 1
//  
//   2
//    
//     3
//      
//       4
//        
//         5
void Test3()
{
    BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
    BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
    BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
    BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);

    ConnectTreeNodes(pNode1, nullptr, pNode2);
    ConnectTreeNodes(pNode2, nullptr, pNode3);
    ConnectTreeNodes(pNode3, nullptr, pNode4);
    ConnectTreeNodes(pNode4, nullptr, pNode5);

    Test("Test3", pNode1);

    DestroyList(pNode1);
}

// 树中只有1个结点
void Test4()
{
    BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    Test("Test4", pNode1);

    DestroyList(pNode1);
}

// 树中没有结点
void Test5()
{
    Test("Test5", nullptr);
}

int main(int argc, char* argv[])
{
    Test1();
    Test2();
    Test3();
    Test4();
    Test5();

    return 0;
}
测试代码

分析:此题需要画图手推一遍过程才可以理解,分为左右子树分析。

/*
struct TreeNode {
    int val;
    struct TreeNode *left;
    struct TreeNode *right;
    TreeNode(int x) :
            val(x), left(NULL), right(NULL) {
    }
};*/
class Solution {
public:
    TreeNode* Convert(TreeNode* pRootOfTree)
    {
        TreeNode* pLastNodeInList = nullptr;
        ConvertNode(pRootOfTree, &pLastNodeInList);
        
        TreeNode* pListOfHead = pLastNodeInList;
        while (pListOfHead != nullptr && pListOfHead->left != nullptr)
            pListOfHead = pListOfHead->left;
        return pListOfHead;
    }
    void ConvertNode(TreeNode* pNode, TreeNode** pLastNodeInList)
    {
        if (pNode == nullptr)
            return;
        
        TreeNode* pCurrent = pNode;
        
        if (pCurrent->left != nullptr)
            ConvertNode(pCurrent->left, pLastNodeInList);
        
        pCurrent->left = *pLastNodeInList;
        if (*pLastNodeInList != nullptr)
            (*pLastNodeInList)->right = pCurrent;
        
        *pLastNodeInList = pCurrent;
        
        if (pCurrent->right != nullptr)
            ConvertNode(pCurrent->right, pLastNodeInList);
    }
};
牛客网提交代码
原文地址:https://www.cnblogs.com/ZSY-blog/p/12608684.html