组合计数

minmax容斥:

用于求解(K)大值的期望,((maxRightarrow min))

[E(kthmax(S))=sum_{Tsubseteq S}(-1)^{|T|-k} imes {|T|-1choose k - 1} imes E(min(T)) ]

特殊的,当(K = 1)

[E(max(S))=sum_{Tsubseteq S}(-1)^{|T|-1} imes E(min(T)) ]

(minmax)交换也成立。但是如果求(kmin)而且(min)好求,(max)不好求,则需变为((Sum + 1 - k)max)求解。

HAOI
HDU4624(minmax&&容斥套路2)

期望的线性性:

[E(X+Y)=E(X)+E(Y) ]

组合数公式:

[{{-r}choose {y}}=(-1)^y imes {r+y-1choose y} ]

[{nchoose m}=frac{n imes(n-1) imes(n-2) imesdots imes(n-m+1)}{m!}(nin Z) ]

[{n+mchoose k}=sum_{i=0}^{k}{nchoose i} imes{mchoose k-i} ]

[sum_{k=0}^{n}{nchoose k}^2={2nchoose n} ]

[sum_{r=0}^{n}{nchoose r}=2^n ]

[sum_{r=0}^{k}{n+r-1choose r}={n+kchoose k} ]

[sum_{i=1}^n i imes {nchoose i} imes x^i=n imes (1+x)^{n-1} ]

[{nchoose m}\%2==1 <=>(n&m)==m ]

[{nchoose m}=prod_{i=1}^k frac{n+1-i}{i} ]

[sum_{i=1}^n{ichoose m}={n+1choose m+1} ]

[sum_{i=1}^m{nchoose i}=F(n,m) ]

[{egin{cases}{F(i,i)=1}\{F(i,j+1)=F(i,j)+{ichoose j+1}}\{F(i+1,j)=2 imes F(i,j)-{ichoose j}}end{cases}} ]

[F(i,j)=F(i\%p,p-1) imes F(frac{n}{p},frac{k}{p}-1)+{frac{k}{p}choose frac{n}{p}} imes F(n\%p,k\%p) ]

[-2ij={ichoose 2}+{jchoose 2}-{i+jchoose 2} ]

套路:

(1.)利用(dp)(背包)合并容斥系数((1,-1))(把某几项放到状态上,其他的求和)。(有上界的划分数类问题)
(2.)套路1+神奇思路ZOJ4064
(3.)
(4.)CF932 G
(5.)CF348 D
(LGV~lemma)定理:n个起点,n个终点,一一对应,求互不相交的路径有多少种:

[ans=determinant left[ egin{matrix} e(x_1,y_1) & e(x_1,y_2) & cdots & e(x_1,y_n) \ e(x_2,y_1) & e(x_2,y_2) & cdots & e(x_2,y_n) \ vdots &vdots &ddots &vdots \ e(x_n,y_1) & e(x_n,y_2) & cdots & e(x_n,y_n)end{matrix} ight] ]

(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~e(x,y)=x)(y)的合法路径条数
(6.)(LGV~lemma):n维空间,从((x_1,x_2dots x_n))走到((y_1,y_2dots y_n))方案数$$=(sum y_i-sum x_i)! imes e$$

[e=determinant left[ egin{matrix} frac{1}{(y_1-x_1)!} & frac{1}{(y_1-x_2)!} & cdots & frac{1}{(y_1-x_n)!} \ frac{1}{(y_2-x_1)!} & frac{1}{(y_2-x_2)!} & cdots & frac{1}{(y_2-x_n)!} \ vdots &vdots &ddots &vdots \ frac{1}{(y_n-x_1)!} & frac{1}{(y_n-x_2)!} & cdots & frac{1}{(y_n-x_n)!} end{matrix} ight] ]

(7.)半容斥:无向连通图个数=总数-不联通的图的个数(基准点计数)传送门,一类套路CF53E Dead Ends
(8.)对于递推方程:$$f(i)=a imes f(i-p)+b imes f(i-q)$$
可以理解成每次选择花费(a)的代价走(p)步,或者花费(b)的代价走(q)步那么$$f(n)=sum_{i=0}^{lfloor frac{n}{p} floor} {i+frac{(n-i imes p)}{q}choose i} imes a^i imes b^{frac{(n-i imes p)}{q}}~~~~~~~~~~~(q|(n-i imes p))$$PE 427(q=1),枚举(p),复杂度(O(n^2) Rightarrow O(nlogn))
由此可推

[sum_{i=0}^{lfloor frac n k floor} {n-ichoose i}<=>f(n)=f(n-1)+f(n-k) ]

(10.)考虑组合意义:

[x^k=sum_{i=0}^{x~or~k}{xchoose i} imes i! imes S(k,i) ]

原文地址:https://www.cnblogs.com/Smeow/p/10582615.html