组合数专题

求解组合数 C (n, k) % p 的三种方法:

方法1(逆元求法):  

const int N = 1e5 + 10;
const int MOD = 1e9 + 7;
int f[N], finv[N], inv[N];

void init(void) {    //要求MOD是质数,预处理时间复杂度O(n)
    inv[1] = 1;
    for (int i=2; i<N; ++i) {
        inv[i] = (MOD - MOD / i) * 1ll * inv[MOD%i] % MOD;
    }
    f[0] = finv[0] = 1;
    for (int i=1; i<N; ++i) {
        f[i] = f[i-1] * 1ll * i % MOD;
        finv[i] = finv[i-1] * 1ll * inv[i] % MOD;
    }
}

int comb(int n, int k)  {       //C (n, k) % MOD
    if (k < 0 || k > n) return 0;
    return f[n] * 1ll * finv[n-k] % MOD * finv[k] % MOD;
}

 

方法2:  C(n,m)= C(n,n-m)= C(n-1,m-1)+C(n-1,m)

const int N = 2000 + 10;
const int MOD = 1e9 + 7;
int comb[N][N];

void init(void) {    //对MOD没有要求,预处理时间复杂度O(n^2)
    for (int i=0; i<N; ++i) {
        comb[i][i] = comb[i][0] = 1;
        for (int j=1; j<i; ++j) {
            comb[i][j] = comb[i-1][j] + comb[i-1][j-1];
            if (comb[i][j] >= MOD)  {
                comb[i][j] -= MOD;
            }
        }
    }
    //printf ("%d
", comb[6][3]);
}

方法3(Lucas定理,大组合数取模, HDOJ 3037为例):

ll f[N];
void init(int p) {                 //f[n] = n!
	f[0] = 1;
	for (int i=1; i<=p; ++i)	f[i] = f[i-1] * i % p;
}

ll pow_mod(ll a, ll x, int p)	{
	ll ret = 1;
	while (x)	{
		if (x & 1)	ret = ret * a % p;
		a = a * a % p;
		x >>= 1;
	}
	return ret;
}

ll Lucas(ll n, ll k, int p)	{		//C (n, k) % p
	 ll ret = 1;
	 while (n && k)	{
		ll nn = n % p, kk = k % p;
		if (nn < kk)	return 0;                   //inv (f[kk]) = f[kk] ^ (p - 2) % p
		ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
		n /= p, k /= p;
	 }
	 return ret;
}

int main(void)	{
	init (p);
	printf ("%I64d
", Lucas (n + m, n, p));

	return 0;
}

  

编译人生,运行世界!
原文地址:https://www.cnblogs.com/Running-Time/p/4749067.html