两个Beta函数类型的积分及其一般形式

[Largedisplaystyle int_{0}^{1}frac{sqrt[4]{xleft ( 1-x ight )^{3}}}{left ( 1+x ight )^{3}}mathrm{d}x~~,~~int_{0}^{1}frac{sqrt[3]{xleft ( 1-x ight )^{2}}}{left ( 1+x ight )^{3}}mathrm{d}x ]


(Largemathbf{Solution:})
我们来计算更一般的情况:

[Ileft ( m,n ight )=int_{0}^{1}frac{sqrt[n]{x^{m}left ( 1-x ight )^{n-m}}}{left ( 1+x ight )^{3}}mathrm{d}x ]

为了化为Beta函数,我们作如下变换

[t=frac{2x}{1+x},~ ~ ~ 1-t=frac{1-x}{1+x},~ ~ ~ mathrm{d}t=frac{2mathrm{d}x}{left ( 1+x ight )^{2}} ]

于是直接计算得:

[egin{align*} int_{0}^{1}frac{sqrt[n]{x^{m}left ( 1-x ight )^{n-m}}}{left ( 1+x ight )^{3}}mathrm{d}x &=int_{0}^{1}left ( frac{x}{1+x} ight )^{frac{m}{n}}left ( frac{1-x}{1+x} ight )^{frac{n-m}{n}}frac{mathrm{d}x}{left ( 1+x ight )^{2}} \ &=2^{-frac{n+m}{n}}int_{0}^{1}t^{frac{m}{n}}left ( 1-t ight )^{frac{n-m}{n}}mathrm{d}t \ &=frac{2^{-frac{n+m}{n}}}{Gamma left ( 3 ight )}Gamma left ( frac{m+n}{n} ight )Gamma left ( frac{2n-m}{n} ight ) \ &=2^{-frac{2n+m}{n}}cdot frac{m}{n}cdot frac{n-m}{n}cdot Gamma left ( frac{m}{n} ight )cdot Gamma left ( 1-frac{m}{n} ight )\ &=2^{-frac{2n+m}{n}}cdot frac{mleft ( n-m ight )}{n^{2}}cdot frac{pi }{sinleft ( dfrac{mpi }{n} ight )} end{align*}]

所以原题即为:

[Largeoxed{egin{align*} Ileft ( 1,4 ight )&=color{Blue} {frac{3sqrt[4]{2}}{64}pi}\[15pt] Ileft ( 1,3 ight )&=color{Blue} {frac{pi }{18}frac{sqrt[3]{4}}{sqrt{3}}} end{align*}}]

原文地址:https://www.cnblogs.com/Renascence-5/p/5483303.html