机器学习05--线性回归+岭回归

线性回归

定义与公式

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

  • 特点:只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归

 线性回归当中的关系有两种,一种是线性关系,另一种是非线性关系。线性关系一定是线性模型。线性模型不一定是线性关系

线性回归的损失和优化原理

损失函数

总损失定义为:

  • y_i为第i个训练样本的真实值
  • h(x_i)为第i个训练样本特征值组合预测函数
  • 又称最小二乘法

优化算法

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)

线性回归经常使用的两种优化算法

  • 正规方程

解释:  X为特征值矩阵,y为目标值矩阵。

缺点:当特征过多过复杂时,求解速度太慢并且得不到结果

  • 梯度下降(Gradient Descent)

解释:α为学习速率,需要手动指定(超参数),α旁边的整体表示方向

使用:面对训练数据规模十分庞大的任务 ,能够找到较好的结果

线性回归API

  • sklearn.linear_model.LinearRegression(fit_intercept=True)
    • 通过正规方程优化
    • fit_intercept:是否计算偏置
    • LinearRegression.coef_:回归系数
    • LinearRegression.intercept_:偏置
  • sklearn.linear_model.SGDRegressor(loss="squared_loss", fit_intercept=True, learning_rate ='invscaling', eta0=0.01)
    • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
    • loss:损失类型
      • loss=”squared_loss”: 普通最小二乘法
    • fit_intercept:是否计算偏置
    • learning_rate : string, optional
      • 学习率填充
      • 'constant': eta = eta0
      • 'optimal': eta = 1.0 / (alpha * (t + t0)) [default]
      • 'invscaling': eta = eta0 / pow(t, power_t)
        • power_t=0.25:存在父类当中
      • 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
    • SGDRegressor.coef_:回归系数
    • SGDRegressor.intercept_:偏置

回归性能评估

均方误差(Mean Squared Error)MSE)评价机制:

 注:y^i为预测值,¯y为真实值

API

sklearn.metrics.mean_squared_error(y_true, y_pred)

  • 均方误差回归损失
  • y_true:真实值
  • y_pred:预测值
  • return:浮点数结果

案例分析:波士顿房价预测

代码1:正规方程的优化方法

def linear1():
    """
    正规方程的优化方法对波士顿房价进行预测
    :return:
    """
    # 1)获取数据
    boston = load_boston()

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

    # 3)标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)预估器
    estimator = LinearRegression()
    estimator.fit(x_train, y_train)

    # 5)得出模型
    print("正规方程-权重系数为:
", estimator.coef_)
    print("正规方程-偏置为:
", estimator.intercept_)

    # 6)模型评估
    y_predict = estimator.predict(x_test)
    print("预测房价:
", y_predict)
    error = mean_squared_error(y_test, y_predict)
    print("正规方程-均方误差为:
", error)

    return None

 代码2:梯度下降的优化方法

def linear2():
    """
    梯度下降的优化方法对波士顿房价进行预测
    :return:
    """
    # 1)获取数据
    boston = load_boston()
    print("特征数量:
", boston.data.shape)

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

    # 3)标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)预估器
    estimator = SGDRegressor(learning_rate="constant", eta0=0.01, max_iter=10000, penalty="l1")
    estimator.fit(x_train, y_train)

    # 5)得出模型
    print("梯度下降-权重系数为:
", estimator.coef_)
    print("梯度下降-偏置为:
", estimator.intercept_)

    # 6)模型评估
    y_predict = estimator.predict(x_test)
    print("预测房价:
", y_predict)
    error = mean_squared_error(y_test, y_predict)
    print("梯度下降-均方误差为:
", error)

    return None

正规方程和梯度下降对比

梯度下降正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor

优化方法GD、SGD、SAG

GD

梯度下降(Gradient Descent),原始的梯度下降法需要计算所有样本的值才能够得出梯度,计算量大,所以后面才有会一系列的改进。

SGD

随机梯度下降(Stochastic gradient descent)是一个优化方法。它在一次迭代时只考虑一个训练样本。
SGD的优点:高效、容易实现
SGD的缺点:SGD需要许多超参数:比如正则项参数、迭代数。SGD对于特征标准化是敏感的。

SAG

随机平均梯度法(Stochasitc Average Gradient),由于收敛的速度太慢,有人提出SAG等基于梯度下降的算法。SGDRegressor、岭回归、逻辑回归等当中都会有SAG优化

欠拟合与过拟合

定义

  • 过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)
  • 欠拟合:一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)

原因以及解决办法

欠拟合

  • 原因:学习到数据的特征过少
  • 解决办法:增加数据的特征数量

过拟合

  • 原因:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点
  • 解决办法:正则化

正则化类别

  • L2正则化
    • 作用:可以使得其中一些W的都很小,都接近于0,削弱某个特征的影响
    • 优点:越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象
    • Ridge回归
  • L1正则化
    • 作用:可以使得其中一些W的值直接为0,删除这个特征的影响
    • LASSO回归

岭回归

定义

岭回归,带有L2正则化的线性回归,其实也是一种线性回归。只不过在算法建立回归方程时候,加上正则化的限制,从而达到解决过拟合的效果

API

  • sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver="auto", normalize=False)
    • 具有l2正则化的线性回归
    • alpha:正则化力度,也叫 λ
      • λ取值:0~1 1~10
    • solver:会根据数据自动选择优化方法
      • sag:如果数据集、特征都比较大,选择该随机梯度下降优化
    • normalize:数据是否进行标准化
      • normalize=False:可以在fit之前调用preprocessing.StandardScaler标准化数据
    • Ridge.coef_:回归权重
    • Ridge.intercept_:回归偏置

正则化程度的变化,对结果的影响

  • 正则化力度越大,权重系数会越小
  • 正则化力度越小,权重系数会越大

案例

def linear3():
    """
    岭回归对波士顿房价进行预测
    :return:
    """
    # 1)获取数据
    boston = load_boston()
    print("特征数量:
", boston.data.shape)

    # 2)划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)

    # 3)标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4)预估器
    estimator = Ridge(alpha=0.5, max_iter=10000)
    estimator.fit(x_train, y_train)

    # 保存模型
    #joblib.dump(estimator, "my_ridge.pkl")
    # 加载模型
    #estimator = joblib.load("my_ridge.pkl")

    # 5)得出模型
    print("岭回归-权重系数为:
", estimator.coef_)
    print("岭回归-偏置为:
", estimator.intercept_)

    # 6)模型评估
    y_predict = estimator.predict(x_test)
    print("预测房价:
", y_predict)
    error = mean_squared_error(y_test, y_predict)
    print("岭回归-均方误差为:
", error)

    return None

原文地址:https://www.cnblogs.com/MoooJL/p/14318941.html