DFT, DHT, DCT, DST

Gonzalez R. C. and Woods R. E. Digital Image Processing (Forth Edition)

基本

酉变换

一维的变换:

[mathbf{t} = mathbf{A} mathbf{f}, \ mathbf{f} = mathbf{A}^{H} mathbf{t}, \ mathbf{A}^H = {mathbf{A}^*}^{T}, mathbf{A}^Hmathbf{A} = mathbf{I}. ]

以及二维的变换:

[mathbf{T} = mathbf{A} mathbf{F} mathbf{B}^T, \ mathbf{F} = mathbf{A}^H mathbf{T} mathbf{B}^*, \ mathbf{A}^Hmathbf{A=I}, mathbf{B}^{T}mathbf{B}^* =mathbf{I}. ]

以一维的为例, 实际上就是

[t_u = sum_{x = 0}^{N-1} f_x s(x, u) = mathbf{f}^T mathbf{s}_u, u=0,1,cdots, N-1,\ mathbf{s}_u = [s(0, u), s(1, u), cdots, s(N-1, u)]^T. ]

[mathbf{A} = [mathbf{s}_0, cdots, mathbf{s}_{N-1}]^{T}. ]

others

[sum_{k=0}^n sin (kx) = frac{cos(frac{1}{2}x) - cos (frac{2n+1}{2}x)}{2 sin (frac{x}{2})}, quad x in (2Kpi, 2(K+1)pi) ]

proof:

[egin{array}{ll} 2sin (frac{x}{2}) sum_{k=0}^n sin (kx) &=sum_{k=0}^n [cos (frac{2k-1}{2}x) -cos (frac{2k+1}{2}x) ]\ &= cos(frac{1}{2}x) - cos (frac{2n+1}{2}x). end{array} ]

类似地

[sum_{k=0}^n cos (kx) = frac{sin(frac{2k+1}{2}x) + sin (frac{1}{2}x)}{2 sin (frac{1}{2}x)}, quad x in (2Kpi, 2(K+1)pi) ]

proof:

[egin{array}{ll} 2sin (frac{x}{2}) sum_{k=0}^n cos (kx) &=sum_{k=0}^n [sin (frac{2k+1}{2}x) -sin (frac{2k-1}{2}x) ]\ &= sin(frac{2k+1}{2}x) + sin (frac{1}{2}x). end{array} ]

DFT

[s(x, u) = frac{1}{sqrt{N}} e^{frac{-j2pi xu}{N}} ]

(mathbf{s}_u^H mathbf{s}_u = 1)是显然的, 又注意到

[mathbf{s}_u^H mathbf{s}_{u'} = frac{1}{N}sum_{x=0}^{N-1} e^{frac{-j2pi x(u-u')}{N}}, ]

[sum_{n=0}^{N-1} a^n = frac{1-a^N}{1-a}, ]

由于

[e^{-j2pi x (u - u')} = 1, forall u ot = u'. ]

DHT

DISCRETE HARTLEY TRANSFORM

[s(x, u) = frac{1}{sqrt{N}}mathrm{cas}(frac{2pi xu}{N}) = frac{1}{sqrt{N}}[cos (frac{2pi ux}{N}) + sin (frac{2pi ux}{N})]. ]

[2cos (frac{2pi ux}{N}) cos (frac{2pi u'x}{N}) =cos (frac{2pi (u-u')x}{N}) +cos (frac{2pi (u+u')x}{N}) \ 2sin (frac{2pi ux}{N}) sin (frac{2pi u'x}{N}) =cos (frac{2pi (u-u')x}{N}) -cos (frac{2pi (u+u')x}{N}) \ 2sin (frac{2pi ux}{N}) cos (frac{2pi u'x}{N}) =sin (frac{2pi (u+u')x}{N}) -sin (frac{2pi (u-u')x}{N}) \ ]

故想要证明其为标准正交基, 只需注意到:

[sum_{x=0}^{N-1} sin (frac{2pi k x}{N}) =frac{cos(frac{kpi}{N}) - cos (frac{(2N-1)kpi}{N})}{...}, ]

(k ot=0)的时候, 有

[cos (frac{(2N-1)kpi}{N}) = cos (frac{kpi}{N}), ]

[sum_{x=0}^{N-1}sin (frac{2pi kx}{N}) =0, k ot=0. ]

类似可得:

[sum_{x=0}^{N-1}cos (frac{2pi kx}{N}) =0, k ot=0. ]

正交性如此是易证明的, 实际上标准性是显然的.

DCT

DISCRETE COSINE TRANSFORM

[s(x, u) = alpha (u) cos (frac{(2x + 1)upi}{2N}), \ alpha (u) = left { egin{array}{ll} sqrt{frac{1}{N}}, & u=0, \ sqrt{frac{2}{N}}, & u=1,2,cdots, N-1. \ end{array} ight . ]

其标准正交的思路和DHT是如出一辙的.

与DFT的联系

  1. 定义

[g(x) = left { egin{array}{ll} f(x), & x = 0, 1, cdots, N-1, \ f(2N-x-1), & u=N, N+1, cdots, 2N-1. \ end{array} ight . ]

此时(g(x) = g(2N-1-x));

  1. 计算DFT

[mathbf{t}_F = mathbf{A}_F mathbf{g} = left [ egin{array}{c} mathbf{t}_1 \ mathbf{t}_2 \ end{array} ight ]. ]

  1. 定义

[h(u) = e^{-jpi u / 2N}, u=0,1,cdots, N-1, \ mathbf{s} = [1 / sqrt{2}, 1, 1, cdots, 1]^T. ]

[mathbf{t}_C = mathrm{Re}{mathbf{scirc h circ t_1}}. ]

其中(mathrm{Re})表示实部, (circ)表示逐项乘法.

证明是平凡的.

DST

DISCRETE SINE TRANSFORM

[s(x, u) = sqrt{frac{2}{N+1}} sin (frac{(x+1)(u+1)pi}{N+1}). ]

与DFT的联系

  1. 定义

[g(x) = left { egin{array}{ll} 0, & x = 0, \ f(x-1), & x = 1, cdots, N, \ 0, & x = N + 1, \ -f(2N-x+1), & u=N+1, cdots, 2N+1. \ end{array} ight . ]

此时(g(x) = -g(2N + 2 - x)).

  1. DFT

[mathbf{t}_F = mathbf{A}_F mathbf{g} = left [ egin{array}{c} 0 \ mathbf{t}_1 \ 0 \ mathbf{t}_2 \ end{array} ight ]. ]

[mathbf{t}_S = -mathrm{Imag}{mathbf{t}_1}. ]

其中(mathrm{Imag})表虚部.

原文地址:https://www.cnblogs.com/MTandHJ/p/15097885.html