面试(涉及技术三)

十二、数据倾斜

12.1 数据倾斜表现

12.1.1 hadoop中的数据倾斜表现

  1)有一个多几个Reduce卡住,卡在99.99%,一直不能结束

  2)各种container报错OOM

  3)异常的Reducer读写的数据量极大,至少远远超过其它正常的Reducer

  4)伴随着数据倾斜,会出现任务被kill等各种诡异的表现

12.1.2 hive中数据倾斜

  一般都发生在Sql中group by和join on上,而且和数据逻辑绑定比较深

12.1.3 Spark中的数据倾斜

  1)Executor lost,OOM,Shuffle过程出错

  2)Driver OOM

  3)单个Executor执行时间特别久,整体任务卡在某个阶段不能结束

  4)正常运行的任务突然失败

12.2 数据倾斜产生原因

  1)key分布不均匀

  2)建表时考虑不周:假设我们有两张表,user(用户信息表):userid,register_ip;ip(IP表):ip,register_user_cnt;这可能是两个不同的人开发的数据表。如果我们的数据规范不太完善的话,会出现一种情况:user表中的register_ip字段,如果获取不到这个信息,我们默认为null;但是在ip表中,我们在统计这个值的时候,为了方便,我们把获取不到ip的用户,统一认为他们的ip为0。两边其实都没有错的,但是一旦我们做关联了,这个任务会在做关联的阶段,也就是sql的on的阶段卡死

  3)业务数据激增:比如订单场景,我们某一天在北京和上海两个城市多了强力的推广,结果可能是这两个城市的订单量增长了10000%,其余城市的数据量不变。然后我们要统计不同城市的订单情况,这样,一做group操作,可能直接就数据倾斜

12.3 解决数据倾斜思路

12.3.1 业务逻辑

  我们从业务逻辑的层面上来优化数据倾斜,比如上面的两个城市做推广活动导致那两个城市数据量激增的例子,我们可以单独对这两个城市来做count,单独做时可用两次MR,第一次打散计算,第二次再最终聚合计算。完成后和其它城市做整合

12.3.2 程序层面

  比如说在Hive中,经常遇到count(distinct)操作,这样会导致最终只有一个Reduce任务。我们可以先group by,再在外面包一层count,就可以了。比如计算按用户名去重后的总用户量

12.3.3 调参方面

  Hadoop和Spark都自带了很多的参数和机制来调节数据倾斜,合理利用它们就能解决大部分问题

12.3.4 从业务和数据上解决数据倾斜

  1)有损的方法:找到异常数据,比如ip为0的数据,过滤掉

  2)无损的方法:对分布不均匀的数据,单独计算

  3)先对key做一层hash,先将数据随机打散让它的并行度变大,再汇集

  4)数据预处理

12.4 定位导致数据倾斜代码

12.4.1 某个task执行特别慢的情况

  1)首先要看数据倾斜发生在第几个stage中,如果是用yarn-client模式提交,那么在提交的机器本地是直接可以看到log,可以在log中找到当前运行到了第几个stage;如果是用yarn-cluster模式提交,则可以通过Spark Web UI来查看当前运行到了第几个stage。此外,无论是使用yarn-client模式还是yarn-cluster模式,我们都可以在Spark Web UI上深入看一下当前这个stage各个task分配的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜

  2)看task运行时间和数据量

    task运行时间,比如下图中,倒数第三列显示了每个task的运行时间。明显可以看到,有的task运行特别快,只需要几秒钟就可以运行完;而有的task运行特别慢,需要几分钟才能运行完,此时单从运行时间上看就已经能够确定发生数据倾斜了。

    task数据量,此外,倒数第一列显示了每个task处理的数据量,明显可以看到,运行时间特别短的task只需要处理几百KB的数据即可,而运行时间特别长的task需要处理几千KB的数据,处理的数据量差了10倍。此时更加能够确定是发生了数据倾斜

  3)推断倾斜代码

    知道数据倾斜发生在哪一个stage之后,接着我们就需要根据stage划分原理,推算出来发生倾斜的那个stage对应代码中的哪一部分,这部分代码中肯定会有一个shuffle类算子。精准推算stage与代码的对应关系,需要对Spark的源码有深入的理解,这里我们可以介绍一个相对简单实用的推算方法:只要看到Spark代码中出现了一个shuffle类算子或者是Spark SQL的SQL语句中出现了会导致shuffle的语句(比如group by语句),那么就可以判定,以那个地方为界限划分出了前后两个stage。这里我们就以如下单词计数来举例。

val conf = new SparkConf()val sc = new SparkContext(conf)val lines = sc.textFile("hdfs://...")val words = lines.flatMap(_.split(" "))val pairs = words.map((_, 1))val wordCounts = pairs.reduceByKey(_ + _)wordCounts.collect().foreach(println(_))

    在整个代码中只有一个reduceByKey是会发生shuffle的算子,也就是说这个算子为界限划分出了前后两个stage:
      stage0,主要是执行从textFile到map操作,以及shuffle write操作(对pairs RDD中的数据进行分区操作,每个task处理的数据中,相同的key会写入同一个磁盘文件内)。
      stage1,主要是执行从reduceByKey到collect操作,以及stage1的各个task一开始运行,就会首先执行shuffle read操作(会从stage0的各个task所在节点拉取属于自己处理的那些key,然后对同一个key进行全局性的聚合或join等操作,在这里就是对key的value值进行累加)。
      stage1在执行完reduceByKey算子之后,就计算出了最终的wordCounts RDD,然后会执行collect算子,将所有数据拉取到Driver上,供我们遍历和打印输出。

123456789

    通过对单词计数程序的分析,希望能够让大家了解最基本的stage划分的原理,以及stage划分后shuffle操作是如何在两个stage的边界处执行的。然后我们就知道如何快速定位出发生数据倾斜的stage对应代码的哪一个部分了。
    比如我们在Spark Web UI或者本地log中发现,stage1的某几个task执行得特别慢,判定stage1出现了数据倾斜,那么就可以回到代码中,定位出stage1主要包括了reduceByKey这个shuffle类算子,此时基本就可以确定是是该算子导致了数据倾斜问题。
    此时,如果某个单词出现了100万次,其他单词才出现10次,那么stage1的某个task就要处理100万数据,整个stage的速度就会被这个task拖慢

12.4.2 某个task莫名其妙内存溢出的情况

  这种情况下去定位出问题的代码就比较容易了。我们建议直接看yarn-client模式下本地log的异常栈,或者是通过YARN查看yarn-cluster模式下的log中的异常栈。一般来说,通过异常栈信息就可以定位到你的代码中哪一行发生了内存溢出。然后在那行代码附近找找,一般也会有shuffle类算子,此时很可能就是这个算子导致了数据倾斜。

  但是大家要注意的是,不能单纯靠偶然的内存溢出就判定发生了数据倾斜。因为自己编写的代码的bug,以及偶然出现的数据异常,也可能会导致内存溢出。因此还是要按照上面所讲的方法,通过Spark Web UI查看报错的那个stage的各个task的运行时间以及分配的数据量,才能确定是否是由于数据倾斜才导致了这次内存溢出

12.5 查看导致数据倾斜的key分布情况

  先对pairs采样10%的样本数据,然后使用countByKey算子统计出每个key出现的次数,最后在客户端遍历和打印样本数据中各个key的出现次数。

val sampledPairs = pairs.sample(false, 0.1)
val sampledWordCounts = sampledPairs.countByKey()
sampledWordCounts.foreach(println(_))

12.6 Spark 数据倾斜的解决方案

12.6.1 使用Hive ETL预处理数据

  1)适用场景

    导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案

  2)实现思路

    此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了

  3)方案实现原理

    这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已

  4)方案优缺点

    优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升

    缺点:治标不治本,Hive ETL中还是会发生数据倾斜

  5)方案实践经验

    在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验

  6)项目实践经验

    在美团·点评的交互式用户行为分析系统中使用了这种方案,该系统主要是允许用户通过Java Web系统提交数据分析统计任务,后端通过Java提交Spark作业进行数据分析统计。要求Spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些Spark作业的shuffle操作提前到了Hive ETL中,从而让Spark直接使用预处理的Hive中间表,尽可能地减少Spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升了6倍以上

12.6.2 过滤少数导致倾斜的key

  1)适用场景

    如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜

  2)实现思路

    如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。
    比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。
    如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可

  3)方案实现原理

    将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜

  4)方案优缺点

    优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜

    缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个

  5)方案实践经验

    在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉

12.6.3 提高shuffle操作的并行度

  1)适用场景

    如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案

  2)实现思路

    在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,默认是200,对于很多场景来说都有点过小

  3)方案实现原理 

    增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。
    而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。具体原理如下图所示

  4)方案优缺点

    优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响

    缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限

  5)方案实践经验

    该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用

12.6.4 两阶段聚合(局部聚合+全局聚合)

  1)适用场景

    对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案

  2)实现思路

这个方案的核心实现思路就是进行两阶段聚合:
第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。
接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。
然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。
示例代码如下:
// 第一步,给RDD中的每个key都打上一个随机前缀。
JavaPairRDD<String, Long> randomPrefixRdd = rdd.mapToPair(
        new PairFunction<Tuple2<Long,Long>, String, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String, Long> call(Tuple2<Long, Long> tuple)
                    throws Exception {
                Random random = new Random();
                int prefix = random.nextInt(10);
                return new Tuple2<String, Long>(prefix + "_" + tuple._1, tuple._2);
            }
        });
  
// 第二步,对打上随机前缀的key进行局部聚合。
JavaPairRDD<String, Long> localAggrRdd = randomPrefixRdd.reduceByKey(
        new Function2<Long, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1 + v2;
            }
        });
  
// 第三步,去除RDD中每个key的随机前缀。
JavaPairRDD<Long, Long> removedRandomPrefixRdd = localAggrRdd.mapToPair(
        new PairFunction<Tuple2<String,Long>, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<Long, Long> call(Tuple2<String, Long> tuple)
                    throws Exception {
                long originalKey = Long.valueOf(tuple._1.split("_")[1]);
                return new Tuple2<Long, Long>(originalKey, tuple._2);
            }
        });
  
// 第四步,对去除了随机前缀的RDD进行全局聚合。
JavaPairRDD<Long, Long> globalAggrRdd = removedRandomPrefixRdd.reduceByKey(
        new Function2<Long, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1 + v2;
            }
        });

  3)方案实现原理

    将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图

  4)方案优缺点

    优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上

    缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案

12.6.5 将reduce join转为map join

  1)适用场景

    在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案

  2)实现思路

不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量,广播给其他Executor节点;
接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来


示例如下:
// 首先将数据量比较小的RDD的数据,collect到Driver中来。
List<Tuple2<Long, Row>> rdd1Data = rdd1.collect()
// 然后使用Spark的广播功能,将小RDD的数据转换成广播变量,这样每个Executor就只有一份RDD的数据。
// 可以尽可能节省内存空间,并且减少网络传输性能开销。
final Broadcast<List<Tuple2<Long, Row>>> rdd1DataBroadcast = sc.broadcast(rdd1Data);
  
// 对另外一个RDD执行map类操作,而不再是join类操作。
JavaPairRDD<String, Tuple2<String, Row>> joinedRdd = rdd2.mapToPair(
        new PairFunction<Tuple2<Long,String>, String, Tuple2<String, Row>>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String, Tuple2<String, Row>> call(Tuple2<Long, String> tuple)
                    throws Exception {
                // 在算子函数中,通过广播变量,获取到本地Executor中的rdd1数据。
                List<Tuple2<Long, Row>> rdd1Data = rdd1DataBroadcast.value();
                // 可以将rdd1的数据转换为一个Map,便于后面进行join操作。
                Map<Long, Row> rdd1DataMap = new HashMap<Long, Row>();
                for(Tuple2<Long, Row> data : rdd1Data) {
                    rdd1DataMap.put(data._1, data._2);
                }
                // 获取当前RDD数据的key以及value。
                String key = tuple._1;
                String value = tuple._2;
                // 从rdd1数据Map中,根据key获取到可以join到的数据。
                Row rdd1Value = rdd1DataMap.get(key);
                return new Tuple2<String, String>(key, new Tuple2<String, Row>(value, rdd1Value));
            }
        });
  
// 这里得提示一下。
// 上面的做法,仅仅适用于rdd1中的key没有重复,全部是唯一的场景。
// 如果rdd1中有多个相同的key,那么就得用flatMap类的操作,在进行join的时候不能用map,而是得遍历rdd1所有数据进行join。
// rdd2中每条数据都可能会返回多条join后的数据

  3)方案实现原理

    普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示

  4)方案优缺点

    优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜

    缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况

12.6.6 采样倾斜key并分拆join操作

  1)适用场景

    两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。 如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的

  2)实现思路

对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。
然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀;
而不会导致倾斜的大部分key形成另外一个RDD。
接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀;
不会导致倾斜的大部分key也形成另外一个RDD。
再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。
而另外两个普通的RDD就照常join即可。
最后将两次join的结果使用union算子合并起来即可,就是最终的join结果


示例如下:
// 首先从包含了少数几个导致数据倾斜key的rdd1中,采样10%的样本数据。
JavaPairRDD<Long, String> sampledRDD = rdd1.sample(false, 0.1);
  
// 对样本数据RDD统计出每个key的出现次数,并按出现次数降序排序。
// 对降序排序后的数据,取出top 1或者top 100的数据,也就是key最多的前n个数据。
// 具体取出多少个数据量最多的key,由大家自己决定,我们这里就取1个作为示范。

// 每行数据变为<key,1>
JavaPairRDD<Long, Long> mappedSampledRDD = sampledRDD.mapToPair(
        new PairFunction<Tuple2<Long,String>, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<Long, Long> call(Tuple2<Long, String> tuple)
                    throws Exception {
                return new Tuple2<Long, Long>(tuple._1, 1L);
            }
        });
        
// 按key累加行数
JavaPairRDD<Long, Long> countedSampledRDD = mappedSampledRDD.reduceByKey(
        new Function2<Long, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Long call(Long v1, Long v2) throws Exception {
                return v1 + v2;
            }
        });
        
// 反转key和value,变为<value,key>
JavaPairRDD<Long, Long> reversedSampledRDD = countedSampledRDD.mapToPair(
        new PairFunction<Tuple2<Long,Long>, Long, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<Long, Long> call(Tuple2<Long, Long> tuple)
                    throws Exception {
                return new Tuple2<Long, Long>(tuple._2, tuple._1);
            }
        });

// 以行数排序key,取最多行数的key
final Long skewedUserid = reversedSampledRDD.sortByKey(false).take(1).get(0)._2;
  
// 从rdd1中分拆出导致数据倾斜的key,形成独立的RDD。
JavaPairRDD<Long, String> skewedRDD = rdd1.filter(
        new Function<Tuple2<Long,String>, Boolean>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Boolean call(Tuple2<Long, String> tuple) throws Exception {
                return tuple._1.equals(skewedUserid);
            }
        });
        
// 从rdd1中分拆出不导致数据倾斜的普通key,形成独立的RDD。
JavaPairRDD<Long, String> commonRDD = rdd1.filter(
        new Function<Tuple2<Long,String>, Boolean>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Boolean call(Tuple2<Long, String> tuple) throws Exception {
                return !tuple._1.equals(skewedUserid);
            }
        });
  
// rdd2,就是那个所有key的分布相对较为均匀的rdd。
// 这里将rdd2中,前面获取到的key对应的数据,过滤出来,分拆成单独的rdd,并对rdd中的数据使用flatMap算子都扩容100倍。
// 对扩容的每条数据,都打上0~100的前缀。
JavaPairRDD<String, Row> skewedRdd2 = rdd2.filter(
         new Function<Tuple2<Long,Row>, Boolean>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Boolean call(Tuple2<Long, Row> tuple) throws Exception {
                return tuple._1.equals(skewedUserid);
            }
        }).flatMapToPair(new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Iterable<Tuple2<String, Row>> call(
                    Tuple2<Long, Row> tuple) throws Exception {
                Random random = new Random();
                List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>();
                for(int i = 0; i < 100; i++) {
                    list.add(new Tuple2<String, Row>(i + "_" + tuple._1, tuple._2));
                }
                return list;
            }
              
        });
 
// 将rdd1中分拆出来的导致倾斜的key的独立rdd,每条数据都打上100以内的随机前缀。
// 然后将这个rdd1中分拆出来的独立rdd,与上面rdd2中分拆出来的独立rdd,进行join。
JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD1 = skewedRDD.mapToPair(
        new PairFunction<Tuple2<Long,String>, String, String>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String, String> call(Tuple2<Long, String> tuple)
                    throws Exception {
                Random random = new Random();
                int prefix = random.nextInt(100);
                return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2);
            }
        })
        .join(skewedUserid2infoRDD)
        .mapToPair(new PairFunction<Tuple2<String,Tuple2<String,Row>>, Long, Tuple2<String, Row>>() {
                        private static final long serialVersionUID = 1L;
                        @Override
                        public Tuple2<Long, Tuple2<String, Row>> call(
                            Tuple2<String, Tuple2<String, Row>> tuple)
                            throws Exception {
                            long key = Long.valueOf(tuple._1.split("_")[1]);
                            return new Tuple2<Long, Tuple2<String, Row>>(key, tuple._2);
                        }
                    });
 
// 将rdd1中分拆出来的包含普通key的独立rdd,直接与rdd2进行join。
JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD2 = commonRDD.join(rdd2);
 
// 将倾斜key join后的结果与普通key join后的结果,uinon起来。
// 就是最终的join结果。
JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD = joinedRDD1.union(joinedRDD2);

  3)方案实现原理

    对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。具体原理见下图

  4)方案优缺点

    优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存

    缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合

12.6.7 使用随机前缀和扩容RDD进行join

  1)适用场景

    如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了

  2)实现思路

该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。
然后将该RDD的每条数据都打上一个n以内的随机前缀。
同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。
最后将两个处理后的RDD进行join即可。
示例代码如下:
// 首先将其中一个key分布相对较为均匀的RDD膨胀100倍。
JavaPairRDD<String, Row> expandedRDD = rdd1.flatMapToPair(
        new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Iterable<Tuple2<String, Row>> call(Tuple2<Long, Row> tuple)
                    throws Exception {
                List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>();
                for(int i = 0; i < 100; i++) {
                    list.add(new Tuple2<String, Row>(0 + "_" + tuple._1, tuple._2));
                }
                return list;
            }
        });
  
// 其次,将另一个有数据倾斜key的RDD,每条数据都打上100以内的随机前缀。
JavaPairRDD<String, String> mappedRDD = rdd2.mapToPair(
        new PairFunction<Tuple2<Long,String>, String, String>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String, String> call(Tuple2<Long, String> tuple)
                    throws Exception {
                Random random = new Random();
                int prefix = random.nextInt(100);
                return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2);
            }
        });
  
// 将两个处理后的RDD进行join即可。
JavaPairRDD<String, Tuple2<String, Row>> joinedRDD = mappedRDD.join(expandedRDD);

  3)方案实现原理

    将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高

  4)方案优缺点

    优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错

    缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高

  5)方案实践经验

    曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍

12.6.8 多种方案组合使用

  在实践中发现,很多情况下,如果只是处理较为简单的数据倾斜场景,那么使用上述方案中的某一种基本就可以解决。但是如果要处理一个较为复杂的数据倾斜场景,那么可能需要将多种方案组合起来使用。比如说,我们针对出现了多个数据倾斜环节的Spark作业,可以先运用解决方案一HiveETL预处理和过滤少数导致倾斜的k,预处理一部分数据,并过滤一部分数据来缓解;

  其次可以对某些shuffle操作提升并行度,优化其性能;
  最后还可以针对不同的聚合或join操作,选择一种方案来优化其性能。
  大家需要对这些方案的思路和原理都透彻理解之后,在实践中根据各种不同的情况,灵活运用多种方案,来解决自己的数据倾斜问题

12.7 Spark数据倾斜处理小结

十三、Flink

13.1 简单介绍一下 Flink

  Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。并且 Flink 提供了数据分布、容错机制以及资源管理等核心功能。Flink提供了诸多高抽象层的API以便用户编写分布式任务:
  DataSet API, 对静态数据进行批处理操作,将静态数据抽象成分布式的数据集,用户可以方便地使用Flink提供的各种操作符对分布式数据集进行处理,支持Java、Scala和Python。
  DataStream API,对数据流进行流处理操作,将流式的数据抽象成分布式的数据流,用户可以方便地对分布式数据流进行各种操作,支持Java和Scala。
  Table API,对结构化数据进行查询操作,将结构化数据抽象成关系表,并通过类SQL的DSL对关系表进行各种查询操作,支持Java和Scala。
  此外,Flink 还针对特定的应用领域提供了领域库,例如: Flink ML,Flink 的机器学习库,提供了机器学习Pipelines API并实现了多种机器学习算法。 Gelly,Flink 的图计算库,提供了图计算的相关API及多种图计算算法实现

13.2 Flink跟Spark Streaming的区别

  这个问题是一个非常宏观的问题,因为两个框架的不同点非常之多。但是在面试时有非常重要的一点一定要回答出来:Flink 是标准的实时处理引擎,基于事件驱动。而 Spark Streaming 是微批(Micro-Batch)的模型

13.2.1 架构模型

  Spark Streaming 在运行时的主要角色包括:Master、Worker、Driver、Executor,Flink 在运行时主要包含:Jobmanager、Taskmanager和Slot

13.2.2 任务调度

  Spark Streaming 连续不断的生成微小的数据批次,构建有向无环图DAG,Spark Streaming 会依次创建 DStreamGraph、JobGenerator、JobScheduler。Flink 根据用户提交的代码生成 StreamGraph,经过优化生成 JobGraph,然后提交给 JobManager进行处理,JobManager 会根据 JobGraph 生成 ExecutionGraph,ExecutionGraph 是 Flink 调度最核心的数据结构,JobManager 根据 ExecutionGraph 对 Job 进行调度

13.2.3 时间机制

  Spark Streaming 支持的时间机制有限,只支持处理时间。 Flink 支持了流处理程序在时间上的三个定义:处理时间、事件时间、注入时间。同时也支持 watermark 机制来处理滞后数据

13.2.4 容错机制

  对于 Spark Streaming 任务,我们可以设置 checkpoint,然后假如发生故障并重启,我们可以从上次 checkpoint 之处恢复,但是这个行为只能使得数据不丢失,可能会重复处理,不能做到恰好一次处理语义。Flink 则使用两阶段提交协议来解决这个问题

13.3 Flink集群有哪些角色?各自有什么作用?

  Flink 程序在运行时主要有 TaskManager,JobManager,Client三种角色。
  JobManager扮演着集群中的管理者Master的角色,它是整个集群的协调者,负责接收Flink Job,协调检查点,Failover 故障恢复等,同时管理Flink集群中从节点TaskManager。
  TaskManager是实际负责执行计算的Worker,在其上执行Flink Job的一组Task,每个TaskManager负责管理其所在节点上的资源信息,如内存、磁盘、网络,在启动的时候将资源的状态向JobManager汇报。
  Client是Flink程序提交的客户端,当用户提交一个Flink程序时,会首先创建一个Client,该Client首先会对用户提交的Flink程序进行预处理,并提交到Flink集群中处理,所以Client需要从用户提交的Flink程序配置中获取JobManager的地址,并建立到JobManager的连接,将Flink Job提交给JobManager

13.4 公司怎么提交的实时任务,有多少 Job Manager?

  1)我们使用yarn session模式提交任务;另一种方式是每次提交都会创建一个新的 Flink 集群,为每一个 job 提供资源,任务之间互相独立,互不影响,方便管理。任务执行完成之后创建的集群也会消失。线上命令脚本如下:

bin/yarn-session.sh -n 7 -s 8 -jm 3072 -tm 32768 -qu root.*.* -nm *-* -d

    其中申请 7 个 taskManager,每个 8 核,每个 taskmanager 有 32768M 内存。
  2)集群默认只有一个 Job Manager。但为了防止单点故障,我们配置了高可用。对于standlone模式,我们公司一般配置一个主 Job Manager,两个备用 Job Manager,然后结合 ZooKeeper 的使用,来达到高可用;对于yarn模式,yarn在Job Mananger故障会自动进行重启,所以只需要一个,我们配置的最大重启次数是10次

13.5 Flink的并行度了解吗?Flink的并行度设置是怎样的?

  Flink中的任务被分为多个并行任务来执行,其中每个并行的实例处理一部分数据。这些并行实例的数量被称为并行度。我们在实际生产环境中可以从四个不同层面设置并行度;需要注意的优先级:算子层面>环境层面>客户端层面>系统层面。

13.6 Flink的Checkpoint 存在哪里

  可以是内存,文件系统,或者 RocksDB

13.7 Flink的三种时间语义

13.7.1 Event Time

  是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳

13.7.2 Ingestion Time

  是数据进入Flink的时间

13.7.3 Processing Time

  是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time

13.8 说说Flink中的窗口

  Flink 支持两种划分窗口的方式,按照time和count。如果根据时间划分窗口,那么它就是一个time-window 如果根据数据划分窗口,那么它就是一个count-window。flink支持窗口的两个重要属性(size和interval)如果size=interval,那么就会形成tumbling-window(无重叠数据) 如果size>interval,那么就会形成sliding-window(有重叠数据) 如果size< interval, 那么这种窗口将会丢失数据。比如每5秒钟,统计过去3秒的通过路口汽车的数据,将会漏掉2秒钟的数据。通过组合可以得出四种基本窗口:
  1)time-tumbling-window 无重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5))
  2)time-sliding-window 有重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5), Time.seconds(3))
  3)count-tumbling-window无重叠数据的数量窗口,设置方式举例:countWindow(5)
  4)count-sliding-window 有重叠数据的数量窗口,设置方式举例:countWindow(5,3)

13.9 Exactly-Once的保证

13.9.1 下级存储支持事务

  Flink可以通过实现两阶段提交和状态保存来实现端到端的一致性语义

  1)开始事务(beginTransaction):创建一个临时文件夹,来写把数据写入到这个文件夹里面

  2)预提交(preCommit):将内存中缓存的数据写入文件并关闭

  3)正式提交(commit):将之前写完的临时文件放入目标目录下。这代表着最终的数据会有一些延迟

  4)丢弃(abort):丢弃临时文件

  5)若失败发生在预提交成功后,正式提交前。可以根据状态来提交预提交的数据,也可删除预提交的数据

13.9.2 下级存储不支持事务

  具体实现是幂等写入,需要下级存储具有幂等性写入特性

13.10 说一下Flink状态机制

  Flink在做计算的过程中经常需要存储中间状态,来避免数据丢失和状态恢复。选择的状态存储策略不同,会影响状态持久化如何和 checkpoint 交互。
  Flink提供了三种状态存储方式:MemoryStateBackend、FsStateBackend、RocksDBStateBackend

13.11 Flink 中的Watermark机制

  Watermark 是一种衡量 Event Time 进展的机制,可以设定延迟触发,Watermark 是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark 机制结合 window 来实现;

  数据流中的 Watermark 用于表示 timestamp 小于 Watermark 的数据,都已经到达了,因此,window 的执行也是由 Watermark 触发的

13.12 Flink分布式快照的原理是什么?

  Flink的容错机制的核心部分是制作分布式数据流和操作算子状态的一致性快照。 这些快照充当一致性checkpoint,系统可以在发生故障时回滚。 Flink用于制作这些快照的机制在“分布式数据流的轻量级异步快照”中进行了描述。 它受到分布式快照的标准Chandy-Lamport算法的启发,专门针对Flink的执行模型而定制。
  barriers在数据流源处被注入并行数据流中。快照n的barriers被插入的位置(我们称之为Sn)是快照所包含的数据在数据源中最大位置。
  例如,在Apache Kafka中,此位置将是分区中最后一条记录的偏移量。 将该位置Sn报告给checkpoint协调器(Flink的JobManager)。然后barriers向下游流动。当一个中间操作算子从其所有输入流中收到快照n的barriers时,它会为快照n发出barriers进入其所有输出流中。 一旦sink操作算子(流式DAG的末端)从其所有输入流接收到barriers n,它就向checkpoint协调器确认快照n完成。

  在所有sink确认快照后,意味快照着已完成。一旦完成快照n,job将永远不再向数据源请求Sn之前的记录,因为此时这些记录(及其后续记录)将已经通过整个数据流拓扑,也即是已经被处理结束

13.13 介绍一下Flink的CEP机制

  CEP全称为Complex Event Processing,复杂事件处理,Flink CEP是在 Flink 中实现的复杂事件处理(CEP)库;CEP 允许在无休止的事件流中检测事件模式,让我们有机会掌握数据中重要的部分一个或多个由简单事件构成的事件流通过一定的规则匹配,然后输出用户想得到的数据 —— 满足规则的复杂事件

13.14 Flink CEP 编程中当状态没有到达的时候会将数据保存在哪里?

  在流式处理中,CEP 当然是要支持 EventTime 的,那么相对应的也要支持数据的迟到现象,也就是watermark的处理逻辑。CEP对未匹配成功的事件序列的处理,和迟到数据是类似的。在 Flink CEP的处理逻辑中,状态没有满足的和迟到的数据,都会存储在一个Map数据结构中,也就是说,如果我们限定判断事件序列的时长为5分钟,那么内存中就会存储5分钟的数据,这在我看来,也是对内存的极大损伤之一

原文地址:https://www.cnblogs.com/LzMingYueShanPao/p/15149431.html