Java源码学习(JDK 11)——java.lang.Map

Map:接口

Map

public interface Map<K, V> {
    
    // Query Operations
    int size();
    boolean isEmpty();
    boolean containsKey(Object key);
    boolean containsValue(Object value);
    V get(Object key);

    // Modification Operations
    V put(K key, V value);
    V remove(Object key);

    // Bulk Operations
    void putAll(Map<? extends K, ? extends V> m);
    void clear();

    // Views
    Set<K> keySet();
    Collection<V> values();
    Set<Map.Entry<K, V>> entrySet();

    interface Entry<K, V> {
        K getKey();
        V getValue();
        V setValue(V value);
        boolean equals(Object o);
        int hashCode();

        public static <K extends Comparable<? super K>, V> Comparator<Map.Entry<K, V>> comparingByKey() {
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> c1.getKey().compareTo(c2.getKey());
        }

        public static <K, V extends Comparable<? super V>> Comparator<Map.Entry<K, V>> comparingByValue() {
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> c1.getValue().compareTo(c2.getValue());
        }

        public static <K, V> Comparator<Map.Entry<K, V>> comparingByKey(Comparator<? super K> cmp) {
            Objects.requireNonNull(cmp);
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> cmp.compare(c1.getKey(), c2.getKey());
        }

        public static <K, V> Comparator<Map.Entry<K, V>> comparingByValue(Comparator<? super V> cmp) {
            Objects.requireNonNull(cmp);
            return (Comparator<Map.Entry<K, V>> & Serializable)
                (c1, c2) -> cmp.compare(c1.getValue(), c2.getValue());
        }
    }

    // Comparison and hashing
    boolean equals(Object o);
    int hashCode();

    // Defaultable methods

    default V getOrDefault(Object key, V defaultValue) {
        V v;
        return (((v = get(key)) != null) || containsKey(key)) ? v : defaultValue;
    }

    default void forEach(BiConsumer<? super K, ? super V> action) {
        Objects.requireNonNull(action);
        for (Map.Entry<K, V> entry : entrySet()) {
            K k;
            V v;
            try {
                k = entry.getKey();
                v = entry.getValue();
            } catch (IllegalStateException ise) {
                // this usually means the entry is no longer in the map.
                throw new ConcurrentModificationException(ise);
            }
            action.accept(k, v);
        }
    }

    default void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { /*...*/ }

    default V putIfAbsent(K key, V value) { // key 不存在关联的 value 或 关联的 value 为 null 时 put
        V v = get(key);
        if (v == null) {
            v = put(key, value);
        }

        return v;
    }

    default boolean remove(Object key, Object value) { // 当 map 中存在 key value 键值对时才 remove
        Object curValue = get(key);
        if (!Objects.equals(curValue, value) ||
            (curValue == null && !containsKey(key))) {
            return false;
        }
        remove(key);
        return true;
    }

    default boolean replace(K key, V oldValue, V newValue) { /*...*/ }

    default V replace(K key, V value) {
        V curValue;
        if (((curValue = get(key)) != null) || containsKey(key)) {
            curValue = put(key, value);
        }
        return curValue;
    }

    default V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
        Objects.requireNonNull(mappingFunction);
        V v;
        if ((v = get(key)) == null) {
            V newValue;
            if ((newValue = mappingFunction.apply(key)) != null) {
                put(key, newValue);
                return newValue;
            }
        }

        return v;
    }

    default V computeIfPresent(K key, 
        BiFunction<? super K, ? super V, ? extends V> remappingFunction) { /*...*/ }

    default V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { /*...*/ }

    default V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        Objects.requireNonNull(remappingFunction);
        Objects.requireNonNull(value);
        V oldValue = get(key);
        V newValue = (oldValue == null) ? value : remappingFunction.apply(oldValue, value);
        if (newValue == null) {
            remove(key);
        } else {
            put(key, newValue);
        }
        return newValue;
    }

    // 自从 JDK 9/10 开始加入的一些静态方法

    // of() 系列方法 返回一个不可变的 Map 最多 10 个键值对
    // 即 of() ... of(K k1, V v1, K k2, V v2, ..., K k10, V v10)
    static <K, V> Map<K, V> of() {
        return ImmutableCollections.emptyMap();
    }

    // 返回一个不可变的 map 传入一系列 Entry 
    static <K, V> Map<K, V> ofEntries(Entry<? extends K, ? extends V>... entries) { /*...*/ }

    // 返回一个不可变的 Entry 
    static <K, V> Entry<K, V> entry(K k, V v) {
        return new KeyValueHolder<>(k, v);
    }

    // 返回一个不可变的 map 传入一个 Map 
    @SuppressWarnings({"rawtypes","unchecked"})
    static <K, V> Map<K, V> copyOf(Map<? extends K, ? extends V> map) {
        if (map instanceof ImmutableCollections.AbstractImmutableMap) {
            return (Map<K,V>)map;
        } else {
            return (Map<K,V>)Map.ofEntries(map.entrySet().toArray(new Entry[0]));
        }
    }
}
  • Map 接口定义了一系列的查询修改等基本操作,并为很多复杂方法提供了默认实现。

  • Map 内部定义了一个接口 Entry,用于定义键值对,并提供键值对的比较器。

AbstractMap

public abstract class AbstractMap<K,V> implements Map<K,V> {

    protected AbstractMap() {
    }

    // Query Operations

    public int size() {
        return entrySet().size();
    }

    public boolean isEmpty() {
        return size() == 0;
    }

    public boolean containsValue(Object value) { /*...*/ } // 实现方式与 get 类似

    public boolean containsKey(Object key) { /*...*/ } // 实现方式与 get 类似

    public V get(Object key) {
        Iterator<Entry<K,V>> i = entrySet().iterator();
        if (key==null) {
            while (i.hasNext()) {
                Entry<K,V> e = i.next();
                if (e.getKey()==null)
                    return e.getValue();
            }
        } else {
            while (i.hasNext()) {
                Entry<K,V> e = i.next();
                if (key.equals(e.getKey()))
                    return e.getValue();
            }
        }
        return null;
    }


    // Modification Operations

    public V put(K key, V value) {  // 支持 put 的 Map 覆盖该方法 不支持 put 的 Map 不需要覆盖 直接抛异常
        throw new UnsupportedOperationException();
    }

    public V remove(Object key) {   // O(n) 级别的 remove 很多 Map 可以覆盖该方法 提高效率
        Iterator<Entry<K,V>> i = entrySet().iterator();
        Entry<K,V> correctEntry = null;
        if (key==null) {
            while (correctEntry==null && i.hasNext()) {
                Entry<K,V> e = i.next();
                if (e.getKey()==null)
                    correctEntry = e;
            }
        } else {
            while (correctEntry==null && i.hasNext()) {
                Entry<K,V> e = i.next();
                if (key.equals(e.getKey()))
                    correctEntry = e;
            }
        }

        V oldValue = null;
        if (correctEntry !=null) {
            oldValue = correctEntry.getValue();
            i.remove();
        }
        return oldValue;
    }


    // Bulk Operations

    public void putAll(Map<? extends K, ? extends V> m) { /*...*/ }

    public void clear() {
        entrySet().clear();
    }

    // Views

    transient Set<K>        keySet;
    transient Collection<V> values;

    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            // 定义一个匿名内部类
            ks = new AbstractSet<K>() {
                public Iterator<K> iterator() {
                    return new Iterator<K>() {
                        private Iterator<Entry<K,V>> i = entrySet().iterator();

                        public boolean hasNext() {
                            return i.hasNext();
                        }

                        public K next() {
                            return i.next().getKey();
                        }

                        public void remove() {
                            i.remove();
                        }
                    };
                }

                // 将各种操作委托给外部
                public int size() {
                    return AbstractMap.this.size();
                }

                public boolean isEmpty() {
                    return AbstractMap.this.isEmpty();
                }

                public void clear() {
                    AbstractMap.this.clear();
                }

                public boolean contains(Object k) {
                    return AbstractMap.this.containsKey(k);
                }
            };
            keySet = ks;
        }
        return ks;
    }

    public Collection<V> values() {
        Collection<V> vals = values;
        if (vals == null) {
            vals = new AbstractCollection<V>() {
                // 与 keySet() 类似 将操作委托给外部
            };
            values = vals;
        }
        return vals;
    }

    public abstract Set<Entry<K,V>> entrySet();


    // Comparison and hashing

    public boolean equals(Object o) {
        if (o == this)
            return true;

        if (!(o instanceof Map))
            return false;
        Map<?,?> m = (Map<?,?>) o;
        if (m.size() != size())
            return false;

        // 比较每一个键值对中 key 和 value 而不是 Entry
        try {
            for (Entry<K, V> e : entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                if (value == null) {
                    if (!(m.get(key) == null && m.containsKey(key)))
                        return false;
                } else {
                    if (!value.equals(m.get(key)))
                        return false;
                }
            }
        } catch (ClassCastException unused) {
            return false;
        } catch (NullPointerException unused) {
            return false;
        }

        return true;
    }

    public int hashCode() {
        int h = 0;
        for (Entry<K, V> entry : entrySet())
            h += entry.hashCode();
        return h;
    }

    public String toString() { /*...*/ }

    protected Object clone() throws CloneNotSupportedException { /*...*/ }

    // 提供给 SimpleEntry 和 SimpleImmutableEntry 使用的工具方法
    private static boolean eq(Object o1, Object o2) {
        return o1 == null ? o2 == null : o1.equals(o2);
    }

    // Entry 的简单实现
    public static class SimpleEntry<K,V>
        implements Entry<K,V>, java.io.Serializable
    {
        private static final long serialVersionUID = -8499721149061103585L;

        private final K key;
        private V value;

        public SimpleEntry(K key, V value) {
            this.key   = key;
            this.value = value;
        }

        public SimpleEntry(Entry<? extends K, ? extends V> entry) {
            this.key   = entry.getKey();
            this.value = entry.getValue();
        }

        public K getKey() { return key; }

        public V getValue() { return value; }

        public V setValue(V value) {
            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        public boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            return eq(key, e.getKey()) && eq(value, e.getValue());
        }

        public int hashCode() {
            return (key   == null ? 0 :   key.hashCode()) ^
                   (value == null ? 0 : value.hashCode());
        }

        public String toString() { return key + "=" + value; }
    }

    // 不可变 Entry 的简单实现
    public static class SimpleImmutableEntry<K,V>
        implements Entry<K,V>, java.io.Serializable
    {
        private static final long serialVersionUID = 7138329143949025153L;

        private final K key;
        private final V value;  // value 是 final 不可变的

        // 构造方法 与 SimpleEntry 类似

        // get 方法 与 SimpleEntry 一致

        public V setValue(V value) {
            throw new UnsupportedOperationException();
        }

        // equals hashCode String 方法 与 SimpleEntry 一致

    }
}
  • AbstractMap 提供了几乎所有操作的实现,各种操作都基于 entrySet() 抽象方法,因此子类只需要实现 entrySet() 方法,可修改的 Map 需要提供 put 的实现。

  • AbstractMap 提供了两种简单的 Entry 实现,一种可变的 Entry,一种不可变的 Entry。

HashMap

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;

    /**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    // 链表转红黑树的条件1:链表长度 > 8
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    // 链表转红黑树的条件2:数组长度 >= 64
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */

    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    // 将 hash 值高位扩散散列到低位上 因为通常只有 hash 值的低位决定数组下标
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     */
    int threshold;

    /**
     * The load factor for the hash table.
     */
    final float loadFactor;

    /* ---------------- Public operations -------------- */

    /**
     * Constructs an empty {@code HashMap} with the specified initial
     * capacity and load factor.
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    public HashMap(int initialCapacity) { /*...*/ }

    /**
     * Constructs an empty {@code HashMap} with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    public int size() { return size; }

    public boolean isEmpty() { return size == 0; }

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)  // 红黑树
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {    // 链表
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    public boolean containsKey(Object key) { return getNode(hash(key), key) != null; }

    public V put(K key, V value) { return putVal(hash(key), key, value, false, true); }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)  // 取 hash 值的低若干位
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))   // 头结点
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);   // 插入完成
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            // 此时 binCount 为 7 
                            // 从 0 开始计数 说明除头结点外 还有 8 个结点
                            // 因此插入后 链表结点数量 > 8 时 转为红黑树
                            treeifyBin(tab, hash);  
                        break;
                    }
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e); // LinkedHashMap 使用
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 计算新容量和新门限 通常翻倍
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? 
                (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        // 再散列
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {   // 新位置在新数组的前半部分(原位置)
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {                          // 新位置在新数组的后半部分(偏移oldCap)
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) // 数组长度 < 64 只调整数组大小 不会转为红黑树
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null; // 头结点 和 尾结点
            do {    // 将所有 Node 转为 TreeNode
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);    // tree 化
        }
    }

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; 
    }

    final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) {
        // 与 putVal 类似
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            // 找到待 remove 的结点
            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null 
                && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p) // 头结点
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node); // LinkedHashMap 使用
                return node;
            }
        }
        return null;
    }

    public void clear() { /*...*/ }

    // 遍历数组的每一个结点
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (Node<K,V> e : tab) {
                for (; e != null; e = e.next) {
                    if ((v = e.value) == value || (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    // 内部类实现
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

    final class KeySet extends AbstractSet<K> { /*...*/ }

    // 内部类实现
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> { /*...*/ }

    // 内部类实现
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (Node<K,V> e : tab) {
                    for (; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /* ------------------------------------------------------------ */
    // iterators

    abstract class HashIterator {
        Node<K,V> next;        // next entry to return
        Node<K,V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node<K,V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            removeNode(p.hash, p.key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class KeyIterator extends HashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }

    final class ValueIterator extends HashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

    final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support


    /*
     * The following package-protected methods are designed to be
     * overridden by LinkedHashMap, but not by any other subclass.
     * Nearly all other internal methods are also package-protected
     * but are declared final, so can be used by LinkedHashMap, view
     * classes, and HashSet.
     */

    // Create a regular (non-tree) node
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

    // Create a tree bin node
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        return new TreeNode<>(hash, key, value, next);
    }

    // For treeifyBin
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }


    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node<K,V> p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval(Node<K,V> p) { }

    /* ------------------------------------------------------------ */
    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        // LinkedHashMap.Entry<K,V> extends HashMap.Node<K,V>
        // TreeNode 是一种特化的 Node

        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

        /**
         * Returns root of tree containing this node.
         */
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         */
        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) { /*...*/ }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Forms tree of the nodes linked from this node.
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                // 遍历链表的每个结点
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        // 找到插入位置
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);   // 平衡红黑树
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root); // 确保根节点为头结点
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {   // 遍历红黑树 重新组合成链表
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         */
        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab, int h, K k, V v) { /*...*/ }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        // 当树结点数量过少时 可能发生转化成链表
        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                  boolean movable) { /*...*/ }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            // 根据数量决定 链表化 还是 重新树化
            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                tb = t.prev, tn = (TreeNode<K,V>)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }
}

  • HashMap 底层结构:数组 + 链表 + 红黑树。

    链表和红黑树 的选择:

    1. 红黑树的查询复杂度是对数级的,链表的查询是线性的,但结点个数较少的情况下,链表的查询速度已经很快。
    2. 红黑树结点的空间占用约为链表结点的 2 倍。

    因此,只有当冲突结点足够多的时候,才考虑转化为红黑树。

    • 链表转红黑树:

      1. 插入新结点后,链表结点数量 > 8

      2. 数组的长度 >= 64

      同时满足以上两个条件才能转化为红黑树

    • 红黑树转链表:红黑树结点数量 <= 6

    选择 8 的原因
    在理想情况下,使用随机 hashCode 和 0.75 的负载因子,hash 冲突的结点数量概率基本符合泊松分布,结点数量超过 8 的可能小于千万分之一。

    因此,出现了红黑树的情况,表明很有可能 hash 方法出现了问题。

    TREEIFY 和 UNTREEIFY 门限不等的原因(个人理解):
    如果相等,可能会使得链表和红黑树的转化过于频繁。即结点个数始终在门限附近徘徊,导致数据结构多次转化。
    而门限不等,相当于留下了一些缓冲的空间,当结点数量下降到一定程度时,才会将红黑树转化为链表。

  • HashMap put 流程:

    1. 如果是空数组,调用 resize() 方法,将容量和门限初始化。

    2. 是否存在 hash 冲突(数组对应位置是否为 null)

      • 不存在冲突,直接创建新结点,接 3
      • 存在冲突,找到对应插入/修改的位置,3 种情况:
        • 头结点 key 值相等
        • 否则,遍历红黑树
        • 否则,遍历链表;如果是插入新结点,可能会转为红黑树

      如果是插入新结点,已经在上述流程中完成,后接 3;
      否则,根据 ifAbsent 更新结点,调用 afterNodeAccess() 方法,并返回旧值。

    3. 修改 modCount

    4. size++; 根据情况(结点个数 > 负载因子 * 数组长度)调用 resize

    5. 调用 afterNodeInsertion() 方法

    6. 返回空值

    即:插入新结点会走1~6完整的流程,更新 value 会在第 2 步完成,然后直接返回。

  • HashMap 数组长度永远是 2 的幂,默认初始为 16。

    • 方便通过 hash 值计算下标。
    • 数组扩容时,再散列后的下标值计算也会方便很多。
// 下标计算
index = (n - 1) & hash; // 通过位运算 只取 hash 值的低若干位

// 再散列下标计算
final Node<K,V>[] resize() {
    // ...
    // oldCapacity = 0b0...010...0
    // newCapacity = 0b0...100...0
    if ((e.hash & oldCap) == 0) { // 通过位运算 判断新下标位于新数组的前半部还是后半部
        if (loTail == null)
            loHead = e;
        else
            loTail.next = e;
        loTail = e;
    }
    // ...
}

可见,下标的计算只用到了 hash 值的后若干位。因此,HashMap 将原本 hashCode 的高位映射到低位上,减少哈希冲突。

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
  • HashMap 内部类 KeySet,Values,EntrySet,分别用于 keySet(),values(),entrySet()。

  • HashMap 内部抽象类 HashIterator,迭代的方式是数组遍历。内部类 KeyIterator,ValueIterator,EntryIterator 继承了该抽象类。

  • HashMap 内部类 Node 实现了 Map.Entry,作为链表的结点。内部类 TreeNode 间接继承了 Node 类,作为红黑树的节点。

LinkedHashMap

public class LinkedHashMap<K,V>
    extends HashMap<K,V>
    implements Map<K,V>
{
    /**
     * HashMap.Node subclass for normal LinkedHashMap entries.
     */
    static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

    private static final long serialVersionUID = 3801124242820219131L;

    /**
     * The head (eldest) of the doubly linked list.
     */
    transient LinkedHashMap.Entry<K,V> head;

    /**
     * The tail (youngest) of the doubly linked list.
     */
    transient LinkedHashMap.Entry<K,V> tail;

    /**
     * The iteration ordering method for this linked hash map: {@code true}
     * for access-order, {@code false} for insertion-order.
     */
    final boolean accessOrder;

    // internal utilities

    // link at the end of list
    private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
        LinkedHashMap.Entry<K,V> last = tail;
        tail = p;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
    }

    // apply src's links to dst
    private void transferLinks(LinkedHashMap.Entry<K,V> src, LinkedHashMap.Entry<K,V> dst) {
        LinkedHashMap.Entry<K,V> b = dst.before = src.before;
        LinkedHashMap.Entry<K,V> a = dst.after = src.after;
        if (b == null)
            head = dst;
        else
            b.after = dst;
        if (a == null)
            tail = dst;
        else
            a.before = dst;
    }

    // overrides of HashMap hook methods

    void afterNodeRemoval(Node<K,V> e) { // unlink
        LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.before = p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a == null)
            tail = b;
        else
            a.before = b;
    }

    void afterNodeInsertion(boolean evict) { // possibly remove eldest
        LinkedHashMap.Entry<K,V> first;
        if (evict && (first = head) != null && removeEldestEntry(first)) {
            K key = first.key;
            removeNode(hash(key), key, null, false, true);
        }
    }

    void afterNodeAccess(Node<K,V> e) { // move node to last
        LinkedHashMap.Entry<K,V> last;
        if (accessOrder && (last = tail) != e) {    // 按访问顺序排序
            LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            p.after = null;
            if (b == null)
                head = a;
            else
                b.after = a;
            if (a != null)
                a.before = b;
            else
                last = b;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
            tail = p;
            ++modCount;
        }
    }

    // 方法覆盖 遍历链表
    public boolean containsValue(Object value) {
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
            V v = e.value;
            if (v == value || (value != null && value.equals(v)))
                return true;
        }
        return false;
    }

    public V get(Object key) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) == null)
            return null;
        if (accessOrder)
            afterNodeAccess(e);
        return e.value;
    }

    public V getOrDefault(Object key, V defaultValue) { /*...*/ }


    /**
     * Returns {@code true} if this map should remove its eldest entry.
     * This method is invoked by {@code put} and {@code putAll} after
     * inserting a new entry into the map.  It provides the implementor
     * with the opportunity to remove the eldest entry each time a new one
     * is added.  This is useful if the map represents a cache: it allows
     * the map to reduce memory consumption by deleting stale entries.
     */
    // LinkedHashMap 适合用于实现缓存等与插入顺序或访问顺序有关的数据结构
    // 比如 LRU 算法 可以将该方法覆盖 return size > ? 来实现(并且构造时将 accessOrder 置为 true)
    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
        return false;
    }

    public Set<K> keySet() { /*...*/ }

    final class LinkedKeySet extends AbstractSet<K> { /*...*/ }

    public Collection<V> values() { /*...*/ }

    final class LinkedValues extends AbstractCollection<V> { /*...*/ }

    public Set<Map.Entry<K,V>> entrySet() { /*...*/ }

    final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> { /*...*/ }

    // Map overrides

    public void forEach(BiConsumer<? super K, ? super V> action) { /*...*/ }

    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { /*...*/ }

    // Iterators

    abstract class LinkedHashIterator {
        LinkedHashMap.Entry<K,V> next;
        LinkedHashMap.Entry<K,V> current;
        int expectedModCount;

        LinkedHashIterator() {
            next = head;
            expectedModCount = modCount;
            current = null;
        }

        public final boolean hasNext() {
            return next != null;
        }

        final LinkedHashMap.Entry<K,V> nextNode() {
            LinkedHashMap.Entry<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            current = e;
            next = e.after;
            return e;
        }

        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            removeNode(p.hash, p.key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class LinkedKeyIterator extends LinkedHashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().getKey(); }
    }

    final class LinkedValueIterator extends LinkedHashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

    final class LinkedEntryIterator extends LinkedHashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }
}
  • LinkedHashMap 继承自 HashMap,内部维护了一条链表,代表访问顺序,或者插入顺序。默认为 插入顺序

    • 插入或访问之后,会调用 afterNodeInsertion/afterNodeAccess 方法,来维护链表的顺序。

    • afterNodeInsertion 方法会调用 removeEldestEntry 来判断是否需要移除链表的头节点。

    • removeEldestEntry 方法永远返回 false。但我们可以覆盖该方法来实现定容量的 LinkedHashMap,从而实现缓存等结构。

class LRUCache {

    LinkedHashMap<Integer, Integer> cache;

    public LRUCache(int capacity) {
        cache = new LinkedHashMap<Integer, Integer>(capacity, .75f, true) { // 设置 accessOrder 为 true
            @Override
            protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
                return cache.size() > capacity;
            }
        };
    }

    public int get(int key) {
        return cache.getOrDefault(key, -1);
    }

    public void put(int key, int value) {
        cache.put(key, value);
    }
}
  • LinkedHashSet 的底层是 LinkedHashMap,但只有 accessOrder 置为 false 的构造器,因此 LinkedHashSet 只维护 插入顺序

  • LinkedHashMap 中所有的 Entry 被链接在一起,map 的遍历操作都是通过链表来完成的。

TreeMap

public class TreeMap<K,V>
    extends AbstractMap<K,V>
    implements NavigableMap<K,V>, Cloneable, java.io.Serializable
{

    private final Comparator<? super K> comparator;

    private transient Entry<K,V> root;

    private transient int size = 0;

    private transient int modCount = 0;

    // K 必须实现 Comparable 接口
    public TreeMap() {
        comparator = null;
    }

    public TreeMap(Comparator<? super K> comparator) {
        this.comparator = comparator;
    }

    public TreeMap(Map<? extends K, ? extends V> m) { /*...*/ }

    public TreeMap(SortedMap<K, ? extends V> m) { /*...*/ }


    // Query Operations

    public int size() { return size; }

    public boolean containsKey(Object key) { return getEntry(key) != null; }

    public boolean containsValue(Object value) {
        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
            if (valEquals(value, e.value))
                return true;
        return false;
    }

    public V get(Object key) {
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }

    public Comparator<? super K> comparator() { return comparator; }

    public K firstKey() { return key(getFirstEntry()); }

    public K lastKey() { return key(getLastEntry()); }

    public void putAll(Map<? extends K, ? extends V> map) { /*...*/ }

    final Entry<K,V> getEntry(Object key) {
        // Offload comparator-based version for sake of performance
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
        Comparable<? super K> k = (Comparable<? super K>) key;
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = k.compareTo(p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

    final Entry<K,V> getEntryUsingComparator(Object key) { /*...*/ }

    final Entry<K,V> getCeilingEntry(K key) { /*...*/ }

    final Entry<K,V> getFloorEntry(K key) { /*...*/ }

    final Entry<K,V> getHigherEntry(K key) { /*...*/ }

    final Entry<K,V> getLowerEntry(K key) { /*...*/ }

    // NavigableMap API methods

    public Map.Entry<K,V> firstEntry() { return exportEntry(getFirstEntry()); }

    public Map.Entry<K,V> lastEntry() { return exportEntry(getLastEntry()); }

    public Map.Entry<K,V> pollFirstEntry() { /*...*/ }

    public Map.Entry<K,V> pollLastEntry() { /*...*/ }

    public Map.Entry<K,V> lowerEntry(K key) { return exportEntry(getLowerEntry(key)); }

    public K lowerKey(K key) { return keyOrNull(getLowerEntry(key)); }

    public Map.Entry<K,V> floorEntry(K key) { return exportEntry(getFloorEntry(key)); }

    public K floorKey(K key) { return keyOrNull(getFloorEntry(key)); }

    public Map.Entry<K,V> ceilingEntry(K key) { return exportEntry(getCeilingEntry(key)); }

    public K ceilingKey(K key) { return keyOrNull(getCeilingEntry(key)); }

    public Map.Entry<K,V> higherEntry(K key) { return exportEntry(getHigherEntry(key)); }

    public K higherKey(K key) { return keyOrNull(getHigherEntry(key)); }

    // Views

    /**
     * Fields initialized to contain an instance of the entry set view
     * the first time this view is requested.  Views are stateless, so
     * there's no reason to create more than one.
     */
    private transient EntrySet entrySet;
    private transient KeySet<K> navigableKeySet;
    private transient NavigableMap<K,V> descendingMap;

    public Set<K> keySet() { return navigableKeySet(); }

    public NavigableSet<K> navigableKeySet() {
        KeySet<K> nks = navigableKeySet;
        return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
    }

    public NavigableSet<K> descendingKeySet() {
        return descendingMap().navigableKeySet();
    }

    public Collection<V> values() { /*...*/ }

    public Set<Map.Entry<K,V>> entrySet() { /*...*/ }

    public NavigableMap<K, V> descendingMap() { /*...*/ }

    public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { /*...*/ }

    public NavigableMap<K,V> headMap(K toKey, boolean inclusive) { /*...*/ }

    public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) { /*...*/ }

    public SortedMap<K,V> subMap(K fromKey, K toKey) { /*...*/ }

    public SortedMap<K,V> headMap(K toKey) { /*...*/ }

    public SortedMap<K,V> tailMap(K fromKey) { /*...*/ }

    // Red-black mechanics

    private static final boolean RED   = false;
    private static final boolean BLACK = true;

    static final class Entry<K,V> implements Map.Entry<K,V> {
        K key;
        V value;
        Entry<K,V> left;
        Entry<K,V> right;
        Entry<K,V> parent;
        boolean color = BLACK;

        // ...
    }
}
  • TreeMap 的内部是 红黑树。key 必须实现 Comparable 接口,或构造时传入一个 key 类型的比较器。并且 key 不能为 null,因为无法排序。

  • TreeMap 的查询就是树的查询。遍历顺序是 key 的升序。

Hashtable

public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable {

    private transient Entry<?,?>[] table;

    private transient int count;

    private int threshold;

    private float loadFactor;

    private transient int modCount = 0;

    public Hashtable(int initialCapacity, float loadFactor) { /*...*/ }

    public Hashtable(int initialCapacity) { this(initialCapacity, 0.75f); }

    /**
     * Constructs a new, empty hashtable with a default initial capacity (11)
     * and load factor (0.75).
     */
    public Hashtable() {
        this(11, 0.75f);
    }

    public Hashtable(Map<? extends K, ? extends V> t) {
        this(Math.max(2*t.size(), 11), 0.75f);
        putAll(t);
    }

    public synchronized Enumeration<K> keys() {
        return this.<K>getEnumeration(KEYS);
    }

    @SuppressWarnings("unchecked")
    public synchronized V get(Object key) {
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();
        int index = (hash & 0x7FFFFFFF) % tab.length;
        for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) {
            if ((e.hash == hash) && e.key.equals(key)) {
                return (V)e.value;
            }
        }
        return null;
    }

    @SuppressWarnings("unchecked")
    protected void rehash() {
        int oldCapacity = table.length;
        Entry<?,?>[] oldMap = table;

        // overflow-conscious code
        int newCapacity = (oldCapacity << 1) + 1;   // 扩容 2 倍 + 1
        if (newCapacity - MAX_ARRAY_SIZE > 0) {
            if (oldCapacity == MAX_ARRAY_SIZE)
                // Keep running with MAX_ARRAY_SIZE buckets
                return;
            newCapacity = MAX_ARRAY_SIZE;
        }
        Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];

        modCount++;
        threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
        table = newMap;

        for (int i = oldCapacity ; i-- > 0 ;) {
            for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
                Entry<K,V> e = old;
                old = old.next;

                int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                e.next = (Entry<K,V>)newMap[index];
                newMap[index] = e;
            }
        }
    }

    // key 和 value 不能为空
    public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {
            throw new NullPointerException();
        }

        // Makes sure the key is not already in the hashtable.
        Entry<?,?> tab[] = table;
        int hash = key.hashCode();  // key 为空会抛出异常
        int index = (hash & 0x7FFFFFFF) % tab.length;
        @SuppressWarnings("unchecked")
        Entry<K,V> entry = (Entry<K,V>)tab[index];
        for(; entry != null ; entry = entry.next) {
            if ((entry.hash == hash) && entry.key.equals(key)) {
                V old = entry.value;
                entry.value = value;
                return old;
            }
        }

        addEntry(hash, key, value, index);
        return null;
    }

    /**
     * Hashtable bucket collision list entry
     */
    private static class Entry<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Entry<K,V> next;

        protected Entry(int hash, K key, V value, Entry<K,V> next) {
            this.hash = hash;
            this.key =  key;
            this.value = value;
            this.next = next;
        }

        // ...
    }

    // Types of Enumerations/Iterations
    private static final int KEYS = 0;
    private static final int VALUES = 1;
    private static final int ENTRIES = 2;

    private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
        final Entry<?,?>[] table = Hashtable.this.table;
        int index = table.length;
        Entry<?,?> entry;
        Entry<?,?> lastReturned;
        final int type;

        /**
         * Indicates whether this Enumerator is serving as an Iterator
         * or an Enumeration.  (true -> Iterator).
         */
        final boolean iterator;

        protected int expectedModCount = Hashtable.this.modCount;

        Enumerator(int type, boolean iterator) {
            this.type = type;
            this.iterator = iterator;
        }

        // ...
    }
}
  • Hashtable 与 HashMap 原理是一致的。

    相比于 HashMap :

    • Hashtable 是线程安全的,方法是同步的

    • Hashtable 初始容量为 11,每次扩容 2 × size + 1

    • Hashtable 遍历使用 Enumerator

    • Hashtable 继承 Dictionary

    • Hashtable 的 key 和 value 均不允许为 null

    • Hashtable 的 hash 值直接使用 key.hashCode()

原文地址:https://www.cnblogs.com/JL916/p/12729346.html