题解-[SDOI2017]数字表格

题解-[SDOI2017]数字表格

前置知识:

莫比乌斯反演</>


[SDOI2017]数字表格

(T) 组测试数据,(f_i) 表示 ( exttt{Fibonacci}) 数列第 (i) 项((f_0=0)(f_1=1)(f_i=f_{i-1}+f_{i-2})),求

[left(prodlimits_{i=1}^nprodlimits_{j=1}^mf_{gcd(i,j)} ight)mod(10^9+7) ]

数据范围:(Tle 1000)(1le n,mle 10^6)


本来是水题,但是这个蒟蒻一下犯了好多常见毛病,所以来写篇题解。

  1. 忘记用生成 (mu) 的线性筛函数了。

  2. 忘记幂次取模要膜 (varphi(mod)) 了。


假设 (nle m)

[egin{split} g(n,m)=&prodlimits_{i=1}^nprodlimits_{j=1}^mf_{gcd(i,j)}\ =&prodlimits_{d=1}^nf_d^{sumlimits_{i=1}^nsumlimits_{j=1}^m[gcd(i,j)=d]}\ =&prodlimits_{d=1}^nf_d^{sumlimits_{i=1}^{lfloorfrac nd floor}sumlimits_{j=1}^{lfloorfrac md floor}[gcd(i,j)=1]}\ =&prodlimits_{d=1}^nf_d^{sumlimits_{i=1}^{lfloorfrac nd floor}sumlimits_{j=1}^{lfloorfrac md floor}sumlimits_{k|gcd(i,j)}mu(k)}\ =&prodlimits_{d=1}^nf_d^{sumlimits_{k=1}^{lfloorfrac nd floor}mu(k)sumlimits_{i=1}^{lfloorfrac nd floor}[k|i]sumlimits_{j=1}^{lfloorfrac md floor}[k|j]}\ =&prodlimits_{d=1}^nf_d^{sumlimits_{k=1}^{lfloorfrac nd floor}mu(k)lfloorfrac{n}{dk} floorlfloorfrac{m}{dk} floor}\ end{split} ]

然后现在直接分块套分块 (Theta(N+Tn)) 可以得到 (30) 分。


为了 ( exttt{AC}),只好拿 (T=dk) 带入继续走:

[egin{split} g(n,m)=&prodlimits_{d=1}^nf_d^{sumlimits_{k=1}^{lfloorfrac nd floor}mu(k)lfloorfrac{n}{dk} floorlfloorfrac{m}{dk} floor}\ =&prodlimits_{d=1}^nf_d^{sumlimits_{k=1}^{lfloorfrac nd floor}mu(k)lfloorfrac{n}{T} floorlfloorfrac{m}{T} floor}\ =&prodlimits_{T=1}^nprodlimits_{d|T}f_d^{mu(frac{T}{d})lfloorfrac{n}{T} floorlfloorfrac{m}{T} floor}\ =&prodlimits_{T=1}^nleft(prodlimits_{d|T}f_d^{mu(frac{T}{d})} ight)^{lfloorfrac{n}{T} floorlfloorfrac{m}{T} floor}\ end{split} ]

然后括号外面就 (Theta(sqrt n)) 分块,里面就 (Theta(Nlog N)) 预处理出来。

最后时间复杂度:(Theta(Nlog N+Tsqrt n))


code

#include <bits/stdc++.h>
using namespace std;

//&Start
#define lng long long
#define lit long double
#define kk(i,n) " 
"[i==n]
const int inf=0x3f3f3f3f;
const lng Inf=0x3f3f3f3f3f3f3f3f;

//&Data
const int N=1e6,mod=1e9+7;
int t,n,m;

//&Pow
int Pow(int a,int x){
	int res=1;
	for(;x;a=1ll*a*a%mod,x>>=1)
		if(x&1) res=1ll*res*a%mod;
	return res;
}

//&Mobius&Fibonacci
bitset<N+10> np;
int p[N+10],cnt,mu[N+10],tp[N+10],f[N+10],g[N+10],h[N+10];
void Mobius(){
	np[1]=true;
	mu[1]=f[1]=g[1]=h[1]=1;
	for(int i=2;i<=N;i++){
		if(!np[i]) p[++cnt]=i,mu[i]=-1;
		f[i]=(f[i-1]+f[i-2])%mod;
		g[i]=Pow(f[i],mod-2);
		h[i]=1;
		for(int j=1;j<=cnt&&i*p[j]<=N;j++){
			np[i*p[j]]=1;
			if(i%p[j]==0){mu[i*p[j]]=0;break;}
			mu[i*p[j]]=-mu[i];
		}
	}
	for(int k=1;k<=N;k++){ //nlogn 的暴力筛
		if(mu[k]==0) continue;
		for(int T=k;T<=N;T+=k)
			h[T]=1ll*h[T]*(mu[k]==1?f[T/k]:g[T/k])%mod;
	}
	h[0]=1;
	for(int i=1;i<=N;i++) h[i]=1ll*h[i-1]*h[i]%mod;//前缀积
}

//&Main
int main(){
	Mobius();//这东西千万不能忘记打
	scanf("%d",&t);
	for(int ti=1;ti<=t;ti++){
		scanf("%d%d",&n,&m);
		if(n>m) n^=m^=n^=m;
		int res=1,a,x;
		for(int l=1,r;l<=n;l=r+1){
			r=min(n/(n/l),m/(m/l));
			a=1ll*h[r]*Pow(h[l-1],mod-2)%mod;
			x=1ll*(n/l)*(m/l)%(mod-1);//幂次一定一定一定要模(phi(mod))
			res=1ll*res*Pow(a,x)%mod;
		}
		printf("%d
",res);
	}
	return 0;
}

祝大家学习愉快!

原文地址:https://www.cnblogs.com/George1123/p/12489320.html