设计模式之工厂方法模式

题目

[实验任务一]:加密算法
目前常用的加密算法有DES(Data Encryption Standard)和IDEA(International Data Encryption Algorithm)国际数据加密算法等,请用工厂方法实现加密算法系统。

类图

Java

方法抽象类

package com.gazikel;

public interface Method {
    public abstract void work(String str, String password);
}

方法工厂抽象类

package com.gazikel;

public interface MethodFactory {
    public Method produceMethod();
}

方法实现

DES

package com.gazikel;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;

public class DES implements Method {

    public void work(String str, String password) {
        // String codeStringBegin = "信1905-2 20194077 郭智昊"; // 要加密的明文
        String codeStringEnd = null; // 加密后的密文
        String decodeString = null; // 密文解密后得到的明文
        System.out.println("要加密的明文:" + str);
        String cipherType = "DESede"; // 加密算法类型,可设置为DES、DESede、AES等字符串
        try {
            // 获取密钥生成器
            KeyGenerator keyGen = KeyGenerator.getInstance(cipherType);
            // 初始化密钥生成器,不同的加密算法其密钥长度可能不同
            keyGen.init(112);
            // 生成密钥
            SecretKey key = keyGen.generateKey();

            // 得到密钥字节码
            byte[] keyByte = key.getEncoded();
            // 输出密钥的字节码
            System.out.println("密钥是:");
            for (int i = 0; i < keyByte.length; i++) {
                System.out.print(keyByte[i] + ",");
            }
            System.out.println("");
            // 创建密码器
            Cipher cp = Cipher.getInstance(cipherType);
            // 初始化密码器
            cp.init(Cipher.ENCRYPT_MODE, key);
            System.out.println("要加密的字符串是:" + str);
            byte[] codeStringByte = str.getBytes("UTF8");
            System.out.println("要加密的字符串对应的字节码是:");
            for (int i = 0; i < codeStringByte.length; i++) {
                System.out.print(codeStringByte[i] + ",");
            }
            System.out.println("");
            // 开始加密
            byte[] codeStringByteEnd = cp.doFinal(codeStringByte);
            System.out.println("加密后的字符串对应的字节码是:");
            for (int i = 0; i < codeStringByteEnd.length; i++) {
                System.out.print(codeStringByteEnd[i] + ",");
            }
            System.out.println("");
            codeStringEnd = new String(codeStringByteEnd);
            System.out.println("加密后的字符串是:" + codeStringEnd);
            System.out.println("");
            // 重新初始化密码器
            cp.init(Cipher.DECRYPT_MODE, key);
            // 开始解密
            byte[] decodeStringByteEnd = cp.doFinal(codeStringByteEnd);
            System.out.println("解密后的字符串对应的字节码是:");
            for (int i = 0; i < decodeStringByteEnd.length; i++) {
                System.out.print(decodeStringByteEnd[i] + ",");
            }
            System.out.println("");
            decodeString = new String(decodeStringByteEnd);
            System.out.println("解密后的字符串是:" + decodeString);
            System.out.println("");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

IDEA

package com.gazikel;

import com.gazikel.Method;
import org.apache.commons.codec.binary.Base64;
import org.bouncycastle.jce.provider.BouncyCastleProvider;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
import java.security.Key;
import java.security.Security;

public class IDEA implements Method {

    public static final String KEY_ALGORITHM = "IDEA";

    public static final String CIPHER_ALGORITHM = "IDEA/ECB/ISO10126Padding";

    public static byte[] initkey() throws Exception {
        // 加入bouncyCastle支持
        Security.addProvider(new BouncyCastleProvider());

        // 实例化密钥生成器
        KeyGenerator kg = KeyGenerator.getInstance(KEY_ALGORITHM);
        // 初始化密钥生成器,IDEA要求密钥长度为128位
        kg.init(128);
        // 生成密钥
        SecretKey secretKey = kg.generateKey();
        // 获取二进制密钥编码形式
        return secretKey.getEncoded();
    }

    /**
     * 转换密钥
     *
     * @param key
     *            二进制密钥
     * @return Key 密钥
     */
    private static Key toKey(byte[] key) throws Exception {
        // 实例化DES密钥
        // 生成密钥
        SecretKey secretKey = new SecretKeySpec(key, KEY_ALGORITHM);
        return secretKey;
    }

    /**
     * 加密数据
     *
     * @param data
     *            待加密数据
     * @param key
     *            密钥
     * @return byte[] 加密后的数据
     */
    private static byte[] encrypt(byte[] data, byte[] key) throws Exception {
        // 加入bouncyCastle支持
        Security.addProvider(new BouncyCastleProvider());
        // 还原密钥
        Key k = toKey(key);
        // 实例化
        Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM);
        // 初始化,设置为加密模式
        cipher.init(Cipher.ENCRYPT_MODE, k);
        // 执行操作
        return cipher.doFinal(data);
    }

    /**
     * 解密数据
     *
     * @param data
     *            待解密数据
     * @param key
     *            密钥
     * @return byte[] 解密后的数据
     */
    private static byte[] decrypt(byte[] data, byte[] key) throws Exception {
        // 加入bouncyCastle支持
        Security.addProvider(new BouncyCastleProvider());
        // 还原密钥
        Key k = toKey(key);
        Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM);
        // 初始化,设置为解密模式
        cipher.init(Cipher.DECRYPT_MODE, k);
        // 执行操作
        return cipher.doFinal(data);
    }

    public static String getKey() {
        String result = null;
        try {
            result = Base64.encodeBase64String(initkey());
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    public static String ideaEncrypt(String data, String key) {
        String result = null;
        try {
            byte[] data_en = encrypt(data.getBytes(), Base64.decodeBase64(key));
            result = Base64.encodeBase64String(data_en);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    public static String ideaDecrypt(String data, String key) {
        String result = null;
        try {
            byte[] data_de = decrypt(Base64.decodeBase64(data), Base64.decodeBase64(key));
            ;
            result = new String(data_de);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    public void work(String str, String password) {
        String key = getKey();
        System.out.println("要加密的原文:" + str);
        System.out.println("密钥:" + key);
        String data_en = ideaEncrypt(str, key);
        System.out.println("密文:" + data_en);
        String data_de = ideaDecrypt(data_en, key);
        System.out.println("原文:" + data_de);
    }
}

工厂实现

DESFactory

package com.gazikel;

public class DesFactory implements MethodFactory {
    @Override
    public DES produceMethod() {
        System.out.println("使用DES算法");
        return new DES();
    }
}

IDEAFactory

package com.gazikel;

public class IdeaFactory implements MethodFactory {
    @Override
    public IDEA produceMethod() {
        System.out.println("使用IDEA算法");
        return new IDEA();
    }
}

Test

package com.gazikel;

import java.util.Scanner;

public class Test {
    public static void main(String[] args) {

        DES des = new DES();
        IDEA idea = new IDEA();
        try {
            int n = 0;

            Scanner in = new Scanner(System.in);
            while (n != 3) {
                System.out.println("请选择要使用的加密算法 1.DES加密算法 2.IDEA加密算法");
                System.out.println("3.退出");
                System.out.println("请选择:");
                if (in.hasNextInt()) {
                    n = in.nextInt();
                } else {
                    System.out.println("输入的不是整数,请重新输入:");
                    continue;
                }
                switch (n) {
                    case 1: {
                        des.work("信1905-2 20194077 郭智昊", "0E329232EA6D0D73");
                        break;
                    }
                    case 2: {
                        idea.work("信1905-2 20194077 郭智昊", "0E329232EA6D0D73");
                        break;
                    }
                }
            }
        }

        catch (Exception e) {
            System.out.println(e.getMessage());
        }
    }
}

C++

main.cpp

#include<iostream>
#include<bitset>
#include<string>
#include<fstream>
using namespace std;

class Method {
public:
	virtual void work() = 0;
};

class DES :public Method {
private:
	bitset<64> key;                // 64位密钥
	bitset<48> subKey[16];         // 存放16轮子密钥

	// 初始置换表
	int IP[64] = { 58, 50, 42, 34, 26, 18, 10, 2,
				60, 52, 44, 36, 28, 20, 12, 4,
				62, 54, 46, 38, 30, 22, 14, 6,
				64, 56, 48, 40, 32, 24, 16, 8,
				57, 49, 41, 33, 25, 17, 9,  1,
				59, 51, 43, 35, 27, 19, 11, 3,
				61, 53, 45, 37, 29, 21, 13, 5,
				63, 55, 47, 39, 31, 23, 15, 7 };

	// 结尾置换表
	int IP_1[64] = { 40, 8, 48, 16, 56, 24, 64, 32,
				  39, 7, 47, 15, 55, 23, 63, 31,
				  38, 6, 46, 14, 54, 22, 62, 30,
				  37, 5, 45, 13, 53, 21, 61, 29,
				  36, 4, 44, 12, 52, 20, 60, 28,
				  35, 3, 43, 11, 51, 19, 59, 27,
				  34, 2, 42, 10, 50, 18, 58, 26,
				  33, 1, 41,  9, 49, 17, 57, 25 };

	/*------------------下面是生成密钥所用表-----------------*/

	// 密钥置换表,将64位密钥变成56位
	int PC_1[56] = { 57, 49, 41, 33, 25, 17, 9,
				   1, 58, 50, 42, 34, 26, 18,
				  10,  2, 59, 51, 43, 35, 27,
				  19, 11,  3, 60, 52, 44, 36,
				  63, 55, 47, 39, 31, 23, 15,
				   7, 62, 54, 46, 38, 30, 22,
				  14,  6, 61, 53, 45, 37, 29,
				  21, 13,  5, 28, 20, 12,  4 };

	// 压缩置换,将56位密钥压缩成48位子密钥
	int PC_2[48] = { 14, 17, 11, 24,  1,  5,
				   3, 28, 15,  6, 21, 10,
				  23, 19, 12,  4, 26,  8,
				  16,  7, 27, 20, 13,  2,
				  41, 52, 31, 37, 47, 55,
				  30, 40, 51, 45, 33, 48,
				  44, 49, 39, 56, 34, 53,
				  46, 42, 50, 36, 29, 32 };

	// 每轮左移的位数
	int shiftBits[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };

	/*------------------下面是密码函数 f 所用表-----------------*/

	// 扩展置换表,将 32位 扩展至 48位
	int E[48] = { 32,  1,  2,  3,  4,  5,
				4,  5,  6,  7,  8,  9,
				8,  9, 10, 11, 12, 13,
			   12, 13, 14, 15, 16, 17,
			   16, 17, 18, 19, 20, 21,
			   20, 21, 22, 23, 24, 25,
			   24, 25, 26, 27, 28, 29,
			   28, 29, 30, 31, 32,  1 };

	// S盒,每个S盒是4x16的置换表,6位 -> 4位
	int S_BOX[8][4][16] = {
		{
			{14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7},
			{0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8},
			{4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0},
			{15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}
		},
		{
			{15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10},
			{3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5},
			{0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15},
			{13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9}
		},
		{
			{10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8},
			{13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1},
			{13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7},
			{1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12}
		},
		{
			{7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15},
			{13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9},
			{10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4},
			{3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14}
		},
		{
			{2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9},
			{14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6},
			{4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14},
			{11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3}
		},
		{
			{12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11},
			{10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8},
			{9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6},
			{4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13}
		},
		{
			{4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1},
			{13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6},
			{1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2},
			{6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12}
		},
		{
			{13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7},
			{1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2},
			{7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8},
			{2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}
		}
	};

	// P置换,32位 -> 32位
	int P[32] = {16,7,20,21,
		29,12,28,17,
		1,15,23,26,
		5,18,31,10,
		2,8,24,14,
		32,27,3,9,
		19,13,30,6,
		22,11,4,25};
public:

	/**
	 *  密码函数f,接收32位数据和48位子密钥,产生一个32位的输出
	 */
	bitset<32> f(bitset<32> R, bitset<48> k)
	{
		bitset<48> expandR;
		// 第一步:扩展置换,32 -> 48
		for (int i = 0; i < 48; ++i)
			expandR[47 - i] = R[32 - E[i]];
		// 第二步:异或
		expandR = expandR ^ k;
		// 第三步:查找S_BOX置换表
		bitset<32> output;
		int x = 0;
		for (int i = 0; i < 48; i = i + 6)
		{
			int row = expandR[47 - i] * 2 + expandR[47 - i - 5];
			int col = expandR[47 - i - 1] * 8 + expandR[47 - i - 2] * 4 + expandR[47 - i - 3] * 2 + expandR[47 - i - 4];
			int num = S_BOX[i / 6][row][col];
			bitset<4> binary(num);
			output[31 - x] = binary[3];
			output[31 - x - 1] = binary[2];
			output[31 - x - 2] = binary[1];
			output[31 - x - 3] = binary[0];
			x += 4;
		}
		// 第四步:P-置换,32 -> 32
		bitset<32> tmp = output;
		for (int i = 0; i < 32; ++i)
			output[31 - i] = tmp[32 - P[i]];
		return output;
	}

	/**
	 *  对56位密钥的前后部分进行左移
	 */
	bitset<28> leftShift(bitset<28> k, int shift)
	{
		bitset<28> tmp = k;
		for (int i = 27; i >= 0; --i)
		{
			if (i - shift < 0)
				k[i] = tmp[i - shift + 28];
			else
				k[i] = tmp[i - shift];
		}
		return k;
	}

	/**
	 *  生成16个48位的子密钥
	 */
	void generateKeys()
	{
		bitset<56> realKey;
		bitset<28> left;
		bitset<28> right;
		bitset<48> compressKey;
		// 去掉奇偶标记位,将64位密钥变成56位
		for (int i = 0; i < 56; ++i)
			realKey[55 - i] = key[64 - PC_1[i]];
		// 生成子密钥,保存在 subKeys[16] 中
		for (int round = 0; round < 16; ++round)
		{
			// 前28位与后28位
			for (int i = 28; i < 56; ++i)
				left[i - 28] = realKey[i];
			for (int i = 0; i < 28; ++i)
				right[i] = realKey[i];
			// 左移
			left = leftShift(left, shiftBits[round]);
			right = leftShift(right, shiftBits[round]);
			// 压缩置换,由56位得到48位子密钥
			for (int i = 28; i < 56; ++i)
				realKey[i] = left[i - 28];
			for (int i = 0; i < 28; ++i)
				realKey[i] = right[i];
			for (int i = 0; i < 48; ++i)
				compressKey[47 - i] = realKey[56 - PC_2[i]];
			subKey[round] = compressKey;
		}
	}

	/**
	 *  工具函数:将char字符数组转为二进制
	 */
	bitset<64> charToBitset(const char s[8])
	{
		bitset<64> bits;
		for (int i = 0; i < 8; ++i)
			for (int j = 0; j < 8; ++j)
				bits[i * 8 + j] = ((s[i] >> j) & 1);
		return bits;
	}

	/**
	 *  DES加密
	 */
	bitset<64> encrypt(bitset<64>& plain)
	{
		bitset<64> cipher;
		bitset<64> currentBits;
		bitset<32> left;
		bitset<32> right;
		bitset<32> newLeft;
		// 第一步:初始置换IP
		for (int i = 0; i < 64; ++i)
			currentBits[63 - i] = plain[64 - IP[i]];
		// 第二步:获取 Li 和 Ri
		for (int i = 32; i < 64; ++i)
			left[i - 32] = currentBits[i];
		for (int i = 0; i < 32; ++i)
			right[i] = currentBits[i];
		// 第三步:共16轮迭代
		for (int round = 0; round < 16; ++round)
		{
			newLeft = right;
			right = left ^ f(right, subKey[round]);
			left = newLeft;
		}
		// 第四步:合并L16和R16,注意合并为 R16L16
		for (int i = 0; i < 32; ++i)
			cipher[i] = left[i];
		for (int i = 32; i < 64; ++i)
			cipher[i] = right[i - 32];
		// 第五步:结尾置换IP-1
		currentBits = cipher;
		for (int i = 0; i < 64; ++i)
			cipher[63 - i] = currentBits[64 - IP_1[i]];
		// 返回密文
		return cipher;
	}

	/**
	 *  DES解密
	 */
	bitset<64> decrypt(bitset<64>& cipher)
	{
		bitset<64> plain;
		bitset<64> currentBits;
		bitset<32> left;
		bitset<32> right;
		bitset<32> newLeft;
		// 第一步:初始置换IP
		for (int i = 0; i < 64; ++i)
			currentBits[63 - i] = cipher[64 - IP[i]];
		// 第二步:获取 Li 和 Ri
		for (int i = 32; i < 64; ++i)
			left[i - 32] = currentBits[i];
		for (int i = 0; i < 32; ++i)
			right[i] = currentBits[i];
		// 第三步:共16轮迭代(子密钥逆序应用)
		for (int round = 0; round < 16; ++round)
		{
			newLeft = right;
			right = left ^ f(right, subKey[15 - round]);
			left = newLeft;
		}
		// 第四步:合并L16和R16,注意合并为 R16L16
		for (int i = 0; i < 32; ++i)
			plain[i] = left[i];
		for (int i = 32; i < 64; ++i)
			plain[i] = right[i - 32];
		// 第五步:结尾置换IP-1
		currentBits = plain;
		for (int i = 0; i < 64; ++i)
			plain[63 - i] = currentBits[64 - IP_1[i]];
		// 返回明文
		return plain;
	}

	virtual void work() {
		cout << "------------------des算法----------------" << endl;
		string s = "信1905-2 20194077 郭智昊";
		string k = "12345678";
		bitset<64> plain = charToBitset(s.c_str());
		key = charToBitset(k.c_str());
		// 生成16个子密钥
		generateKeys();
		cout << s << "加密=>";
		bitset<64> cipher = encrypt(plain);
		cout << cipher << endl;
		bitset<64> temp_plain = decrypt(cipher);
		cout << "解密=>" << temp_plain << endl;
		cout << "加密结果已写入文件" << endl;
		fstream file1;
		file1.open("D:\\des.txt", ios::binary | ios::out);
		file1.write((char*)&cipher, sizeof(cipher));
		file1.close();
		
	}
};

class IDEA :public Method {
private:
	typedef bitset<16> code; //16位
	typedef bitset<128> key; //128位秘钥

	bitset<16> sub_key[52];  //52个子秘钥
	bitset<16> inv_sub_key[52];//52个逆子秘钥
	bitset<64> plaint_txt;
public:
	//异或运算
	code XOR(code code_1, code code_2)
	{
		return code_1 ^ code_2;
	}

	//加法运算
	code Plus(code code_1, code code_2)
	{
		int tmp = 0;
		code result;
		for (int i = 0; i < 16; i++) //二进制转换成十进制
		{
			tmp += code_1[i] * pow(2, i) + code_2[i] * pow(2, i);
		}
		tmp %= 65536;
		bitset<16>binary(tmp); //转换成二进制
		for (int i = 0; i < 16; i++)
			result[i] = binary[i];

		return result;
	}

	//逆加法
	code invPlus(code code_in)
	{
		int tmp = 0;
		code result;
		for (int i = 0; i < 16; i++) //二进制转换成十进制
			tmp += code_in[i] * pow(2, i);
		tmp = 65536 - tmp;
		bitset<16>binary(tmp); //转换成二进制
		for (int i = 0; i < 16; i++)
			result[i] = binary[i];

		return result;

	}
	//乘法运算
	code Times(code code_1, code code_2)
	{
		code result;
		long long tmp;
		long long tmp_1 = 0, tmp_2 = 0;
		for (int i = 0; i < 16; i++)  //二进制转换成十进制
		{
			tmp_1 += code_1[i] * pow(2, i);
			tmp_2 += code_2[i] * pow(2, i);
		}
		if (code_1 == 0)
			tmp_1 = 65536;
		if (code_2 == 0)
			tmp_2 = 65536;

		tmp = (tmp_1 * tmp_2) % 65537;
		if (tmp == 65536)  //如果得到最大值即等价于0x0000
			result = 0x0000;
		else
		{
			bitset<16>binary(tmp); //转换成二进制
			for (int i = 0; i < 16; i++)
				result[i] = binary[i];
		}
		return result;
	}

	void Exgcd(int a, int b, int& x, int& y) //欧几里得扩展算法
	{
		if (!b)
			x = 1, y = 0;
		else
			Exgcd(b, a % b, y, x), y -= a / b * x;
	}
	//利用欧几里得扩展算法求乘法的逆
	code invTimes(code code_in)
	{
		code result;
		int tmp = 0;
		for (int i = 0; i < 16; i++)  //首先转换成十进制
			tmp += code_in[i] * pow(2, i);

		int x, y;
		int p = 65537;
		Exgcd(tmp, p, x, y);
		x = (x % p + p) % p;  //x即为tmp在 (mod65537) 的乘法逆
		bitset<16>binary(x); //转换成二进制
		for (int j = 0; j < 16; j++)
			result[j] = binary[j];

		return result;
	}
	//子秘钥生成
	void subkeys_get(code keys_input[8])//输入8个16bit组
	{
		key keys;
		for (int i = 0; i < 8; i++)  //转化成128位
		{
			for (int j = 0; j < 16; j++)
			{
				keys[j + 16 * i] = keys_input[7 - i][j];
			}
		}
		for (int i = 0; i < 8; i++)  //前8个子秘钥(不移动)
		{
			for (int j = 0; j < 16; j++)
				sub_key[i][15 - j] = keys[127 - (j + 16 * i)];
		}
		for (int i = 0; i < 5; i++)  //中间40个子秘钥()每次循环左移25位
		{
			key tmp_keys = keys >> 103;
			keys = (keys << 25) | (tmp_keys);
			for (int j = (8 + 8 * i); j < (8 * (i + 2)); j++)
			{
				for (int k = 0; k < 16; k++)
					sub_key[j][15 - k] = keys[127 - (k + 16 * (j - 8 - 8 * i))];
			}
		}
		key tmp_keys = keys >> 103;   //最后一次循环左移取前四个
		keys = (keys << 25) | (tmp_keys);
		for (int i = 48; i < 52; i++)
		{
			for (int j = 0; j < 16; j++)
				sub_key[i][15 - j] = keys[127 - (j + 16 * (i - 48))];
		}
	}
	void inv_subkeys_get(code sub_key[52])  //将52个子秘钥调用
	{
		//生成逆子秘钥
		for (int i = 6; i < 48; i = i + 6)   //U_1, U_2, U_3, U_4   (2 <= i <= 8)
		{
			inv_sub_key[i] = invTimes(sub_key[48 - i]);
			inv_sub_key[i + 1] = invPlus(sub_key[50 - i]);
			inv_sub_key[i + 2] = invPlus(sub_key[49 - i]);
			inv_sub_key[i + 3] = invTimes(sub_key[51 - i]);
		}
		for (int i = 0; i < 48; i = i + 6)    //U_5, U_6   (1 <= i <= 8)
		{
			inv_sub_key[i + 4] = sub_key[46 - i];
			inv_sub_key[i + 5] = sub_key[47 - i];
		}
		//U_1, U_2, U_3, U_4   (i = 1, 9)
		inv_sub_key[0] = invTimes(sub_key[48]);
		inv_sub_key[1] = invPlus(sub_key[49]);
		inv_sub_key[2] = invPlus(sub_key[50]);
		inv_sub_key[3] = invTimes(sub_key[51]);

		inv_sub_key[48] = invTimes(sub_key[0]);
		inv_sub_key[49] = invPlus(sub_key[1]);
		inv_sub_key[50] = invPlus(sub_key[2]);
		inv_sub_key[51] = invTimes(sub_key[3]);

	}
	//加密
	bitset<64> encrypt(bitset<64> plaint)
	{
		bitset<16> I_1, I_2, I_3, I_4;
		bitset<64> cipher;
		for (int i = 0; i < 16; i++) //明文分成4个16位(I_1, I_2, I_3, I_4)
		{
			I_1[15 - i] = plaint[63 - i];
			I_2[15 - i] = plaint[47 - i];
			I_3[15 - i] = plaint[31 - i];
			I_4[15 - i] = plaint[15 - i];
		}
		for (int i = 0; i < 48; i = i + 6)  //轮结构运算
		{
			bitset<16> tmp_1 = Times(sub_key[i], I_1);
			bitset<16> tmp_2 = Plus(sub_key[i + 1], I_2);
			bitset<16> tmp_3 = Plus(sub_key[i + 2], I_3);
			bitset<16> tmp_4 = Times(sub_key[i + 3], I_4);
			bitset<16> tmp_5 = XOR(tmp_1, tmp_3);
			bitset<16> tmp_6 = XOR(tmp_2, tmp_4);
			bitset<16> tmp_7 = Times(sub_key[i + 4], tmp_5);
			bitset<16> tmp_8 = Plus(tmp_6, tmp_7);
			bitset<16> tmp_9 = Times(tmp_8, sub_key[i + 5]);
			bitset<16> tmp_10 = Plus(tmp_7, tmp_9);
			I_1 = XOR(tmp_1, tmp_9);
			I_2 = XOR(tmp_3, tmp_9);
			I_3 = XOR(tmp_2, tmp_10);
			I_4 = XOR(tmp_4, tmp_10);
		}
		//输出变换
		bitset<16> Y_1 = Times(I_1, sub_key[48]);
		bitset<16> Y_2 = Plus(I_3, sub_key[49]);
		bitset<16> Y_3 = Plus(I_2, sub_key[50]);
		bitset<16> Y_4 = Times(I_4, sub_key[51]);

		for (int i = 0; i < 16; i++) //整合4个输出成密文
		{
			cipher[i] = Y_4[i];
			cipher[i + 16] = Y_3[i];
			cipher[i + 32] = Y_2[i];
			cipher[i + 48] = Y_1[i];
		}
		return cipher;
	}
	//解密(过程与加密一致,子秘钥变成逆子秘钥)
	bitset<64> dencrypt(bitset<64> cipher)
	{

		//解密
		bitset<16> I_1, I_2, I_3, I_4;
		bitset<64> plaint;
		for (int i = 0; i < 16; i++)
		{
			I_1[15 - i] = cipher[63 - i];
			I_2[15 - i] = cipher[47 - i];
			I_3[15 - i] = cipher[31 - i];
			I_4[i] = cipher[i];
		}
		for (int i = 0; i < 48; i = i + 6)
		{
			bitset<16> tmp_1 = Times(inv_sub_key[i], I_1);
			bitset<16> tmp_2 = Plus(inv_sub_key[i + 1], I_2);
			bitset<16> tmp_3 = Plus(inv_sub_key[i + 2], I_3);
			bitset<16> tmp_4 = Times(inv_sub_key[i + 3], I_4);
			bitset<16> tmp_5 = XOR(tmp_1, tmp_3);
			bitset<16> tmp_6 = XOR(tmp_2, tmp_4);
			bitset<16> tmp_7 = Times(inv_sub_key[i + 4], tmp_5);
			bitset<16> tmp_8 = Plus(tmp_6, tmp_7);
			bitset<16> tmp_9 = Times(tmp_8, inv_sub_key[i + 5]);
			bitset<16> tmp_10 = Plus(tmp_7, tmp_9);
			I_1 = XOR(tmp_1, tmp_9);
			I_2 = XOR(tmp_3, tmp_9);
			I_3 = XOR(tmp_2, tmp_10);
			I_4 = XOR(tmp_4, tmp_10);
		}
		bitset<16> Y_1 = Times(I_1, inv_sub_key[48]);
		bitset<16> Y_2 = Plus(I_3, inv_sub_key[49]);
		bitset<16> Y_3 = Plus(I_2, inv_sub_key[50]);
		bitset<16> Y_4 = Times(I_4, inv_sub_key[51]);

		for (int i = 0; i < 16; i++)
		{
			plaint[i] = Y_4[i];
			plaint[i + 16] = Y_3[i];
			plaint[i + 32] = Y_2[i];
			plaint[i + 48] = Y_1[i];
		}
		return  plaint;

	}
	virtual void work() {
		cout << "------------------idea算法----------------" << endl;
		plaint_txt = 0xa6224adf2f28df73;//64位明文
		cout << "明文:" << endl << plaint_txt << endl;
		code keys_input[8] = { 0x151a, 0x048b, 0x71a1, 0xf9c7, 0x5266, 0xbfd6, 0x24a2, 0xdff1 };//128位秘钥

		subkeys_get(keys_input); //生成子秘钥
		inv_subkeys_get(sub_key);//生成逆子秘钥

		bitset<64> cipher = encrypt(plaint_txt); //加密得到密文cipher
		cout << "加密得到的密文为:" << cipher << endl;
		fstream file;
		file.open("D:\\idea.txt", ios::binary | ios::out);
		file.write((char*)&cipher, sizeof(cipher));
		file.close();

		bitset<64> plaint = dencrypt(cipher);   //解密得到明文plaint
		cout << "解密得到:"  << plaint << endl;
	}
};

class MethodFactory {
public:
	virtual Method* ProduceMethod() = 0;
};

class DesFactory : public MethodFactory {
public:
	virtual Method* ProduceMethod() {
		return new DES;
	}
};

class IdeaFactory :public MethodFactory {
public:
	virtual Method* ProduceMethod() {
		return new IDEA;
	}
};

int main(void) {
	MethodFactory * factory = NULL;
	Method *method = NULL;

	factory = new DesFactory;
	method = factory->ProduceMethod();
	method->work();

	delete method;
	delete factory;

	factory = new IdeaFactory;
	method = factory->ProduceMethod();
	method->work();
}

原文地址:https://www.cnblogs.com/Gazikel/p/15596031.html