利用 OpenVINO 进行推理加速(一)

这里介绍下,

  • 如何下载和编译 OpenVINO
  • 利用 Benchmark 进行性能评估
  • 如何利用 OpenVINO 提供的 Mutli-device Plugin 将模型加载到多个设备上

OpenVINO 专注于物联网场景,对于一些边缘端的低算力设备,借助 OpenVINO 可以通过调度 MKLDNN 库 CLDNN 库来在 CPU,iGPU,FPGA 以及其他设备上,加速部署的模型推理的速度;

一个标准的边缘端的推理过程可以分为以下几步:编译模型,优化模型,部署模型; 

 

1. 下载和编译 OpenVINO

需要 clone 代码并且编译源码:

# 1. clone OpenVINO 源码
$ git clone https://github.com/openvinotoolkit/openvino.git

$ cd openvino
$ git submodule update --init --recursive
$ chmod +x install_dependencies.sh
$ ./install_dependencies.sh

# 2. 编译源码
$ cmake -DCMAKE_BUILD_TYPE=Release -DENABLE_PYTHON=ON 
-DPYTHON_EXECUTABLE=/usr/bin/python3.6
..
$ make --jobs=$(nproc --all)

# 3. 安装
$ cmake --install . --prefix /opt/intel/coneypo_test/

# 4. 启用 OpenVINO 环境
$ source /opt/intel/coneypo_test/bin/setupvars.sh
# 注意配置 OpenCV 的环境,export 到 openvino 的路径
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/hddl/code/openvino/inference-engine/temp/opencv_4.5.2_ubuntu18/opencv/lib/

2. 通过 Benchmark app 来进行性能评估

2.1 硬件配置

我这边测试的主机硬件配置:

2.2 下载和转换模型

2.2.1 下载模型

以 alexnet 网络为例,借助 OpenVINO 提供工具,从 open model zoo,通过模型名称检索来进行下载:

$ cd /opt/intel/coneypo_test/deployment_tools/open_model_zoo/tools/downloader/
$ /opt/intel/coneypo_test/deployment_tools/open_model_zoo/tools/downloader# python3 downloader.py --name alexnet
################|| Downloading models ||################

========== Downloading /opt/intel/coneypo_test/deployment_tools/open_model_zoo/tools/downloader/public/alexnet/alexnet.prototxt
... 100%, 3 KB, 36857 KB/s, 0 seconds passed

========== Downloading /opt/intel/coneypo_test/deployment_tools/open_model_zoo/tools/downloader/public/alexnet/alexnet.caffemodel
... 100%, 238146 KB, 13041 KB/s, 18 seconds passed

################|| Post-processing ||################

========== Replacing text in /opt/intel/coneypo_test/deployment_tools/open_model_zoo/tools/downloader/public/alexnet/alexnet.prototxt

2.2.2 转换模型

需要将 caffe 模型转换成 OpenVINO 的 IR 文件:

$ cd /opt/intel/zt_debug/deployment_tools/model_optimizer
$ python3 mo.py --input_model /opt/intel/zt_debug/deployment_tools/open_model_zoo/tool
Model Optimizer arguments:
Common parameters:
        - Path to the Input Model:      /opt/intel/zt_debug/deployment_tools/open_model_zoo/tools/downloader/public/alexnet/alexnet.caffemodel
        - Path for generated IR:        /opt/intel/zt_debug/deployment_tools/model_optimizer/.
        - IR output name:       alexnet
        - Log level:    ERROR
        - Batch:        Not specified, inherited from the model
        - Input layers:         Not specified, inherited from the model
        - Output layers:        Not specified, inherited from the model
        - Input shapes:         Not specified, inherited from the model
        - Mean values:  Not specified
        - Scale values:         Not specified
        - Scale factor:         Not specified
        - Precision of IR:      FP32
        - Enable fusing:        True
        - Enable grouped convolutions fusing:   True
        - Move mean values to preprocess section:       None
        - Reverse input channels:       False
Caffe specific parameters:
        - Path to Python Caffe* parser generated from caffe.proto:      /opt/intel/zt_debug/deployment_tools/model_optimizer/mo/utils/../front/caffe/proto
        - Enable resnet optimization:   True
        - Path to the Input prototxt:   /opt/intel/zt_debug/deployment_tools/open_model_zoo/tools/downloader/public/alexnet/alexnet.prototxt
        - Path to CustomLayersMapping.xml:      /opt/intel/zt_debug/deployment_tools/model_optimizer/mo/utils/../../extensions/front/caffe/CustomLayersMappin
        - Path to a mean file:  Not specified
        - Offsets for a mean file:      Not specified
        - Inference Engine found in:    /opt/intel/zt_auto/python/python3.6/openvino
Inference Engine version:       2.1.custom_zt/AutoPlugin_c6e9314a9e96f74183023323dc6a026cd0b4549e
Model Optimizer version:            custom_zt/AutoPlugin_c6e9314a9e96f74183023323dc6a026cd0b4549e
[ SUCCESS ] Generated IR version 10 model.
[ SUCCESS ] XML file: /opt/intel/zt_debug/deployment_tools/model_optimizer/alexnet.xml
[ SUCCESS ] BIN file: /opt/intel/zt_debug/deployment_tools/model_optimizer/alexnet.bin
[ SUCCESS ] Total execution time: 19.84 seconds.
[ SUCCESS ] Memory consumed: 1513 MB.

alexnet.xml 和 alexnet.bin 就是 OpenVINO 所需要的模型 IR 文件;

 2.3 Benchmark

然后通过同步或者异步的方式,将 alexnet 模型通过 Multi-device plugin 加载到不同的设备上,然后利用 OpenVINO 提供的 benchmark_app 来评估性能:

$ cd /home/test/code/openvino/bin/intel64/Release

# sync, 使用 CPU 和 GPU $ ./benchmark_app -m /opt/intel/coneypo_test/deployment_tools/model_optimizer/alexnet.xml -i /opt/intel/coneypo_test/deployment_tools/inference_engine/samples/python/hello_classification/images/cat_1.png -api sync -d "MULTI:CPU,GPU" # async,使用 CPU 和 MYRIAD $ ./benchmark_app -m /opt/intel/coneypo_test/deployment_tools/model_optimizer/alexnet.xml -i /opt/intel/coneypo_test/deployment_tools/inference_engine/samples/python/hello_classification/images/cat_1.png -api async -d "MULTI:CPU,MYRIAD"

可以看到 sync 模式下,性能表现差不太多;

走异步的话,可以看到使用 MUTLI device plugin ,加载到多个设备上面异步做推理,会显著提高 FPS:

2.4 加载流程

具体实现:

以 ./benchmark_app

  -m alexnet.xml

  -i cat_1.png

  -api sync

  -d MULTI:CPU,GPU,MYRIAD 

为例:

2.4.1 解析和验证输入

输入的 IR 文件,不是 .blobisNetworkCompiled 为 false:

bool isNetworkCompiled = fileExt(FLAGS_m) == "blob";

2.4.2 加载推理引擎(Inference Engine)

Core ie;

需要使用 CPU, MKLDNN 库作为一个共享库被加载:

const auto extension_ptr = std::make_shared<InferenceEngine::Extension>(FLAGS_l);
ie.AddExtension(extension_ptr);

 需要使用 iGPU,加载 clDNN 库;

auto ext = config.at("GPU").at(CONFIG_KEY(CONFIG_FILE));
ie.SetConfig({{CONFIG_KEY(CONFIG_FILE), ext}}, "GPU");

2.4.3 配置设备

2.4.4 读取 IR 文件

isNetworkCompiled 是 false,所以需要执行这一步,读取 IR 文件;
CNNNetwork cnnNetwork = ie.ReadNetwork(input_model);

2.4.5 调整网络大小,来匹配输入图像尺寸和 batch size

cnnNetwork.reshape(shapes);
batchSize = (!FLAGS_layout.empty()) ? getBatchSize(app_inputs_info) : cnnNetwork.getBatchSize();

2.4.6 配置网络输入输出

2.4.7 将模型加载到设备上

注意这里 "device_name" 传进去的是 ”MULTI:CPU,GPU,MYRIAD" 这种字段,还没有进行解析;

exeNetwork = ie.LoadNetwork(cnnNetwork, device_name);

因为使用了 "-d MULTI:CPU,GPU,MYRIAD",所以走到了 MULTI Plugin 里;

通过 openvino/inference-engine/src/multi_device/multi_device_plugin.cpp  MultiDeviceInferencePlugin::LoadExeNetworkImpl() 去实现加载网络;

对于每个 device:CPU, GPU, MYRIAD,都要 LoadNetwork 一遍:

ExecutableNetworkInternal::Ptr MultiDeviceInferencePlugin::LoadExeNetworkImpl()
{
    ...
    for (auto& p : metaDevices) {
        ...
        auto exec_net = GetCore()->LoadNetwork(network, deviceName, deviceConfig);
        ...
    }
    ...
    return std::make_shared<MultiDeviceExecutableNetwork>(executableNetworkPerDevice,
                                                          metaDevices,
                                                          multiNetworkConfig,
                                                          enablePerfCounters);
}

上个函数 LoadExeNetworkImpl 中会创建 MultiDeviceExecutableNetwork 对象;

这里面会对于每个设备,networkValue.first = CPU/GPU/MYRIAD, networkValue.second = AlexNet/AlexNet/AlexNet;

如果传入的 -d 没有为设备配置 nireq,会通过 GetMetric() 拿到这个设备的 optimalNum,这个值是这个设备的最优的,处理推理请求的个数;

MultiDeviceExecutableNetwork::MultiDeviceExecutableNetwork()
{
    for (auto&& networkValue : _networksPerDevice) {
        ...
        auto numRequests = (_devicePriorities.end() == itNumRequests ||
            itNumRequests->numRequestsPerDevices == -1) ? optimalNum : itNumRequests->numRequestsPerDevices;
        ...     
        for (auto&& workerRequest : workerRequests) {
            ...
            workerRequest._inferRequest = network.CreateInferRequest();
            ...
        }
    }
}


注意这里 network.CreateInferRequest() ,是在 openvino/inference-engine/src/inference_engine/cpp/ie_executable_network.cpp 里面实现的,并不是调用 Multi-plugin 的里面的 CreateInferRequest(),

如果我们给定 nireq=6,创建六个推理请求,可以看到对于设备 CPU/GPU/MYRIAD, workerRequests 的大小分别是 2/1/4,所以会分别启动 2/1/4 个 workerRequest

关于 idleWorkerRequestsworkerRequests 的定义:

DeviceMap<NotBusyWorkerRequests>                            _idleWorkerRequests;
DeviceMap<std::vector<WorkerInferRequest>>                  _workerRequests;

之后会详细介绍 WorkerInferRequest 的工作原理;

2.4.8 配置最优化参数

如果已经配置了推理个数,会跳过这一步;

如果没有配置,就会通过 GetMetric(METRIC_KEY(OPTIMAL_NUMBER_OF_INFER_REQUESTS)) 拿到这个网络最优的 nireq:

nireq = exeNetwork.GetMetric(key).as<unsigned int>();

2.4.9 创建推理请求(Infer Requests)

通过 InferRequestsQueue 来将 nireq 个推理请求下发到要执行的网络,创建了 nireqInferReqWrap 对象:

InferRequestsQueue inferRequestsQueue(exeNetwork, nireq);

可以在 openvino/inference-engine/samples/benchmark_app/infer_request_wrap.hpp 看到 InferRequestsQueue 这个类的定义:

InferRequestsQueue(InferenceEngine::ExecutableNetwork& net, size_t nireq) {
        for (size_t id = 0; id < nireq; id++) {
            requests.push_back(
                std::make_shared<InferReqWrap>(net, id, std::bind(&InferRequestsQueue::putIdleRequest, this, std::placeholders::_1, std::placeholders::_2)));
            _idleIds.push(id);
        }
        resetTimes();
}

InferReqWrap 里面会通过 net.CreateInferRequest()来创建推理请求:

 explicit InferReqWrap(InferenceEngine::ExecutableNetwork& net, size_t id, QueueCallbackFunction callbackQueue)
        : _request(net.CreateInferRequest()), _id(id), _callbackQueue(callbackQueue) {
        _request.SetCompletionCallback([&]() {
            _endTime = Time::now();
            _callbackQueue(_id, getExecutionTimeInMilliseconds());
        });
    }

 比如我们配置 nireq=6,需要创建六个推理请求,通过 openvino/inference-engine/src/multi_device/multi_device_exec_network.cpp 里面的 CreateInferRequest 来创建:

IInferRequestInternal::Ptr MultiDeviceExecutableNetwork::CreateInferRequest() {
    auto syncRequestImpl = CreateInferRequestImpl(_networkInputs, _networkOutputs);
    syncRequestImpl->setPointerToExecutableNetworkInternal(shared_from_this());
    return std::make_shared<MultiDeviceAsyncInferRequest>(std::static_pointer_cast<MultiDeviceInferRequest>(syncRequestImpl),
                                                          _needPerfCounters,
                                                          std::static_pointer_cast<MultiDeviceExecutableNetwork>(shared_from_this()),
                                                          _callbackExecutor);
}

CreateInferRequestImpl() 会根据推理个数,构建 request_to_share_blobs_with,然后分配到各个设备上面;

不断更新 _devicePrioritiesInitial 来决定将当前的 Infer Request 加载到哪个设备上面去;

它的定义:InferenceEngine::InferRequest request_to_share_blobs_with:
InferenceEngine::IInferRequestInternal::Ptr MultiDeviceExecutableNetwork::CreateInferRequestImpl(InferenceEngine::InputsDataMap networkInputs,
                                                                                                InferenceEngine::OutputsDataMap networkOutputs) {
    auto num = _numRequestsCreated++;
    ...
    for (const auto& device : _devicePrioritiesInitial) {
        auto& dev_requests = _workerRequests[device.deviceName];
        ...
        if ((num - sum) < dev_requests.size()) {
            request_to_share_blobs_with = dev_requests.at(num - sum)._inferRequest;
            break;
        }
        sum += dev_requests.size();
    }
    return std::make_shared<MultiDeviceInferRequest>(networkInputs, networkOutputs, request_to_share_blobs_with);
}

这个函数会去创建  MultiDeviceInferRequest 对象,而这个类是在 openvino/inference-engine/src/multi_device/multi_device_infer_request.cpp 里面定义的;

创建 MultiDeviceInferRequest 对象,会去配置这个 Infer Request,给到网络的输入输出:

MultiDeviceInferRequest::MultiDeviceInferRequest(const InputsDataMap&   networkInputs,
                                                 const OutputsDataMap&  networkOutputs,
                                                 InferRequest request_to_share_blobs_with)
        : IInferRequestInternal(networkInputs, networkOutputs) {
    if (request_to_share_blobs_with) {
        for (const auto &it : _networkInputs) {
                _inputs[it.first] = request_to_share_blobs_with.GetBlob(it.first);
        }
        for (const auto &it : _networkOutputs)
            _outputs[it.first] = request_to_share_blobs_with.GetBlob(it.first);
        return;
    }
    // Allocate all input blobs
    for (const auto &it : networkInputs) {
        Layout l = it.second->getLayout();
        Precision p = it.second->getPrecision();
        SizeVector dims = it.second->getTensorDesc().getDims();

        TensorDesc desc = TensorDesc(p, dims, l);
        _inputs[it.first] = make_blob_with_precision(desc);
        _inputs[it.first]->allocate();
    }
    // Allocate all output blobs
    for (const auto &it : networkOutputs) {
        Layout l = it.second->getLayout();
        Precision p = it.second->getPrecision();
        SizeVector dims = it.second->getTensorDesc().getDims();

        TensorDesc desc = TensorDesc(p, dims, l);
        _outputs[it.first] = make_blob_with_precision(desc);
        _outputs[it.first]->allocate();
    }
}

关于 OpenVINO 里面 GetBlob() 的定义:

Get blobs allocated by an infer request using InferenceEngine::InferRequest::GetBlob() and feed an image and the input data to the blobs.

意思就是说,OpenVINO 中推理请求(Infer request)会通过 InferenceEngine::InferRequest::GetBlob() 来将网络输入的数据喂给网络;

MultiDeviceExecutableNetwork::CreateInferRequest() 的返回值还会创建 MultiDeviceAsyncInferRequest 对象;

这个类是在 openvino/inference-engine/src/multi_device/multi_device_async_infer_request.cpp 里面定义的:

MultiDeviceAsyncInferRequest::MultiDeviceAsyncInferRequest(
    const MultiDeviceInferRequest::Ptr&         inferRequest,
    const bool                                  needPerfCounters,
    const MultiDeviceExecutableNetwork::Ptr&    multiDeviceExecutableNetwork,
    const ITaskExecutor::Ptr&                   callbackExecutor) :
    AsyncInferRequestThreadSafeDefault(inferRequest, nullptr, callbackExecutor),
    _multiDeviceExecutableNetwork{multiDeviceExecutableNetwork},
    _inferRequest{inferRequest},
    _needPerfCounters{needPerfCounters} {
    // this executor starts the inference while  the task (checking the result) is passed to the next stage
    struct ThisRequestExecutor : public ITaskExecutor {
        explicit ThisRequestExecutor(MultiDeviceAsyncInferRequest* _this_) : _this{_this_} {}
        void run(Task task) override {
            auto workerInferRequest = _this->_workerInferRequest;
            workerInferRequest->_task = std::move(task);
            workerInferRequest->_inferRequest.StartAsync();
        };
        MultiDeviceAsyncInferRequest* _this = nullptr;
    };
    _pipeline = {
        // if the request is coming with device-specific remote blobs make sure it is scheduled to the specific device only:
        { /*TaskExecutor*/ std::make_shared<ImmediateExecutor>(), /*task*/ [this] {
               // by default, no preferred device:
               _multiDeviceExecutableNetwork->_thisPreferredDeviceName = "";
               // if any input is remote (e.g. was set with SetBlob), let' use the corresponding device
               for (const auto &it : _multiDeviceExecutableNetwork->GetInputsInfo()) {
                   auto b = _inferRequest->GetBlob(it.first);
                   auto r = b->as<RemoteBlob>();
                   if (r) {
                       const auto name = r->getDeviceName();
                       const auto res = std::find_if(
                               _multiDeviceExecutableNetwork->_devicePrioritiesInitial.cbegin(),
                               _multiDeviceExecutableNetwork->_devicePrioritiesInitial.cend(),
                               [&name](const MultiDevicePlugin::DeviceInformation& d){
                                    return d.deviceName == name;
                                   });
                       if (_multiDeviceExecutableNetwork->_devicePrioritiesInitial.cend() == res) {
                           IE_THROW() << "None of the devices (for which current MULTI-device configuration was "
                                                 "initialized) supports a remote blob created on the device named " << name;

                       } else {
                            // it is ok to take the c_str() here (as pointed in the multi_device_exec_network.hpp we need to use const char*)
                            // as the original strings are from the "persistent" vector (with the right lifetime)
                           _multiDeviceExecutableNetwork->_thisPreferredDeviceName = res->deviceName.c_str();
                           break;
                       }
                   }
               }
        }},
        // as the scheduling algo may select any device, this stage accepts the scheduling decision (actual workerRequest)
        // then sets the device-agnostic blobs to the actual (device-specific) request
        {
         /*TaskExecutor*/ _multiDeviceExecutableNetwork, /*task*/ [this] {
               _workerInferRequest = MultiDeviceExecutableNetwork::_thisWorkerInferRequest;
               _inferRequest->SetBlobsToAnotherRequest(_workerInferRequest->_inferRequest);
        }},
        // final task in the pipeline:
        { /*TaskExecutor*/std::make_shared<ThisRequestExecutor>(this), /*task*/ [this] {
              auto status = _workerInferRequest->_status;
              if (InferenceEngine::StatusCode::OK != status) {
                  if (nullptr != InferenceEngine::CurrentException())
                      std::rethrow_exception(InferenceEngine::CurrentException());
                  else
                      IE_EXCEPTION_SWITCH(status, ExceptionType,
                        InferenceEngine::details::ThrowNow<ExceptionType>{}
                            <<= std::stringstream{} << IE_LOCATION
                            <<  InferenceEngine::details::ExceptionTraits<ExceptionType>::string());
              }
              if (_needPerfCounters)
                  _perfMap = _workerInferRequest->_inferRequest.GetPerformanceCounts();
        }}
    };
}

2.4.10 进行推理

 根据是 sync 还是 async,来对创建的 inferRequest 进行推理;

if (FLAGS_api == "sync") {
    inferRequest->infer();
} else {
    inferRequest->wait();
    inferRequest->startAsync();
}

如果是 sync,会去执行 InferReqWrap 类里面定义的 infer():

void infer() {
        _startTime = Time::now();
        _request.Infer();
        _endTime = Time::now();
        _callbackQueue(_id, getExecutionTimeInMilliseconds());
    }

 会去执行之前  MultiDeviceAsyncInferRequest 类里面,pipeline 里面创建的任务,去执行 SetBlobsToAnotherRequest:

{
 /*TaskExecutor*/ _multiDeviceExecutableNetwork, /*task*/ [this] {
       _workerInferRequest = MultiDeviceExecutableNetwork::_thisWorkerInferRequest;
       _inferRequest->SetBlobsToAnotherRequest(_workerInferRequest->_inferRequest);
}},

SetBlobsToAnotherRequest() 里面就是真正的去 GetBlob() 来做推理:

void MultiDeviceInferRequest::SetBlobsToAnotherRequest(InferRequest& req) {
    for (const auto &it : _networkInputs) {
        auto &name = it.first;
        // this request is already in BUSY state, so using the internal functions safely
        auto blob = GetBlob(name);
        if (req.GetBlob(name) != blob) {
            req.SetBlob(name, blob);
        }
    }
    for (const auto &it : _networkOutputs) {
        auto &name = it.first;
        // this request is already in BUSY state, so using the internal functions safely
        auto blob = GetBlob(name);
        if (req.GetBlob(name) != blob) {
            req.SetBlob(name, blob);
        }
    }
}

如果我们指定  -d "MULTI:CPU(1),MYRIAD(3),GPU(2)",分别在 CPU/MYRIAD/GPU 上面创建 1/3/2 个推理请求:

如果我们指定  -d "MULTI:CPU,MYRIAD,GPU",但是没有给每个设备指定 Infer request;

会按照设备顺序,先在 CPU 上面创建 Infer request, 在 async 的情况下,因为有四个物理核,所以可以创建四个,剩下的两个 Infer request 就会创建到第二个设备, MYRIAD 上面:

原文地址:https://www.cnblogs.com/AdaminXie/p/14734161.html