Pandas之DataFrame——Part 3

'''
【课程2.14】  数值计算和统计基础

常用数学、统计方法
 
'''
# 基本参数:axis、skipna

import numpy as np
import pandas as pd

df = pd.DataFrame({'key1':[4,5,3,np.nan,2],
                 'key2':[1,2,np.nan,4,5],
                 'key3':[1,2,3,'j','k']},
                 index = ['a','b','c','d','e'])
print(df)
print(df['key1'].dtype,df['key2'].dtype,df['key3'].dtype)
print('-----')

m1 = df.mean()
print(m1,type(m1))
print('单独统计一列:',df['key2'].mean())
print('-----')
# np.nan :空值
# .mean()计算均值
# 只统计数字列
# 可以通过索引单独统计一列

m2 = df.mean(axis=1)
print(m2)
print('-----')
# axis参数:默认为0,以列来计算,axis=1,以行来计算,这里就按照行来汇总了

m3 = df.mean(skipna=False)
print(m3)
print('-----')
# skipna参数:是否忽略NaN,默认True,如False,有NaN的列统计结果仍未NaN

  输出:

   key1  key2 key3
a   4.0   1.0    1
b   5.0   2.0    2
c   3.0   NaN    3
d   NaN   4.0    j
e   2.0   5.0    k
float64 float64 object
-----
key1    3.5
key2    3.0
dtype: float64 <class 'pandas.core.series.Series'>
单独统计一列: 3.0
-----
a    2.5
b    3.5
c    3.0
d    4.0
e    3.5
dtype: float64
-----
key1   NaN
key2   NaN
dtype: float64
-----
# 主要数学计算方法,可用于Series和DataFrame(1)

df = pd.DataFrame({'key1':np.arange(10),
                  'key2':np.random.rand(10)*10})
print(df)
print('-----')

print(df.count(),'→ count统计非Na值的数量
')
print(df.min(),'→ min统计最小值
',df['key2'].max(),'→ max统计最大值
')
print(df.quantile(q=0.75),'→ quantile统计分位数,参数q确定位置
')
print(df.sum(),'→ sum求和
')
print(df.mean(),'→ mean求平均值
')
print(df.median(),'→ median求算数中位数,50%分位数
')
print(df.std(),'
',df.var(),'→ std,var分别求标准差,方差
')
print(df.skew(),'→ skew样本的偏度
')
print(df.kurt(),'→ kurt样本的峰度
')

  输出:

  key1      key2
0     0  4.667989
1     1  4.336625
2     2  0.746852
3     3  9.670919
4     4  8.732045
5     5  0.013751
6     6  8.963752
7     7  0.279303
8     8  8.586821
9     9  8.899657
-----
key1    10
key2    10
dtype: int64 → count统计非Na值的数量

key1    0.000000
key2    0.013751
dtype: float64 → min统计最小值
 9.67091932107 → max统计最大值

key1    6.750000
key2    8.857754
dtype: float64 → quantile统计分位数,参数q确定位置

key1    45.000000
key2    54.897714
dtype: float64 → sum求和

key1    4.500000
key2    5.489771
dtype: float64 → mean求平均值

key1    4.500000
key2    6.627405
dtype: float64 → median求算数中位数,50%分位数

key1    3.027650
key2    3.984945
dtype: float64 
 key1     9.166667
key2    15.879783
dtype: float64 → std,var分别求标准差,方差

key1    0.000000
key2   -0.430166
dtype: float64 → skew样本的偏度

key1   -1.200000
key2   -1.800296
dtype: float64 → kurt样本的峰度
# 主要数学计算方法,可用于Series和DataFrame(2)

df['key1_s'] = df['key1'].cumsum()
df['key2_s'] = df['key2'].cumsum()
print(df,'→ cumsum样本的累计和
')

df['key1_p'] = df['key1'].cumprod()
df['key2_p'] = df['key2'].cumprod()
print(df,'→ cumprod样本的累计积
')

print(df.cummax(),'
',df.cummin(),'→ cummax,cummin分别求累计最大值,累计最小值
')
# 会填充key1,和key2的值

  输出:

  key1      key2  key1_s     key2_s
0     0  4.667989       0   4.667989
1     1  4.336625       1   9.004614
2     2  0.746852       3   9.751466
3     3  9.670919       6  19.422386
4     4  8.732045      10  28.154431
5     5  0.013751      15  28.168182
6     6  8.963752      21  37.131934
7     7  0.279303      28  37.411236
8     8  8.586821      36  45.998057
9     9  8.899657      45  54.897714 → cumsum样本的累计和

   key1      key2  key1_s     key2_s  key1_p       key2_p
0     0  4.667989       0   4.667989       0     4.667989
1     1  4.336625       1   9.004614       0    20.243318
2     2  0.746852       3   9.751466       0    15.118767
3     3  9.670919       6  19.422386       0   146.212377
4     4  8.732045      10  28.154431       0  1276.733069
5     5  0.013751      15  28.168182       0    17.556729
6     6  8.963752      21  37.131934       0   157.374157
7     7  0.279303      28  37.411236       0    43.955024
8     8  8.586821      36  45.998057       0   377.433921
9     9  8.899657      45  54.897714       0  3359.032396 → cumprod样本的累计积

   key1      key2  key1_s     key2_s  key1_p       key2_p
0   0.0  4.667989     0.0   4.667989     0.0     4.667989
1   1.0  4.667989     1.0   9.004614     0.0    20.243318
2   2.0  4.667989     3.0   9.751466     0.0    20.243318
3   3.0  9.670919     6.0  19.422386     0.0   146.212377
4   4.0  9.670919    10.0  28.154431     0.0  1276.733069
5   5.0  9.670919    15.0  28.168182     0.0  1276.733069
6   6.0  9.670919    21.0  37.131934     0.0  1276.733069
7   7.0  9.670919    28.0  37.411236     0.0  1276.733069
8   8.0  9.670919    36.0  45.998057     0.0  1276.733069
9   9.0  9.670919    45.0  54.897714     0.0  3359.032396 
    key1      key2  key1_s    key2_s  key1_p    key2_p
0   0.0  4.667989     0.0  4.667989     0.0  4.667989
1   0.0  4.336625     0.0  4.667989     0.0  4.667989
2   0.0  0.746852     0.0  4.667989     0.0  4.667989
3   0.0  0.746852     0.0  4.667989     0.0  4.667989
4   0.0  0.746852     0.0  4.667989     0.0  4.667989
5   0.0  0.013751     0.0  4.667989     0.0  4.667989
6   0.0  0.013751     0.0  4.667989     0.0  4.667989
7   0.0  0.013751     0.0  4.667989     0.0  4.667989
8   0.0  0.013751     0.0  4.667989     0.0  4.667989
9   0.0  0.013751     0.0  4.667989     0.0  4.667989 → cummax,cummin分别求累计最大值,累计最小值
# 唯一值:.unique()

s = pd.Series(list('asdvasdcfgg'))
sq = s.unique()
print(s)
print(sq,type(sq))
print(pd.Series(sq))
# 得到一个唯一值数组
# 通过pd.Series重新变成新的Series

sq.sort()
print(sq)
# 重新排序

  输出:

0     a
1     s
2     d
3     v
4     a
5     s
6     d
7     c
8     f
9     g
10    g
dtype: object
['a' 's' 'd' 'v' 'c' 'f' 'g'] <class 'numpy.ndarray'>
0    a
1    s
2    d
3    v
4    c
5    f
6    g
dtype: object
['a' 'c' 'd' 'f' 'g' 's' 'v']
# 值计数:.value_counts()

sc = s.value_counts(sort = False)  # 也可以这样写:pd.value_counts(sc, sort = False)
print(sc)
# 得到一个新的Series,计算出不同值出现的频率
# sort参数:排序,默认为True

  输出:

s    2
d    2
v    1
c    1
a    2
g    2
f    1
dtype: int64
# 成员资格:.isin()

s = pd.Series(np.arange(10,15))
df = pd.DataFrame({'key1':list('asdcbvasd'),
                  'key2':np.arange(4,13)})
print(s)
print(df)
print('-----')

print(s.isin([5,14]))
print(df.isin(['a','bc','10',8]))
# 用[]表示
# 得到一个布尔值的Series或者Dataframe

  输出:

0    10
1    11
2    12
3    13
4    14
dtype: int32
  key1  key2
0    a     4
1    s     5
2    d     6
3    c     7
4    b     8
5    v     9
6    a    10
7    s    11
8    d    12
-----
0    False
1    False
2    False
3    False
4     True
dtype: bool
    key1   key2
0   True  False
1  False  False
2  False  False
3  False  False
4  False   True
5  False  False
6   True  False
7  False  False
8  False  False
'''
【课程2.15】  文本数据

Pandas针对字符串配备的一套方法,使其易于对数组的每个元素进行操作
 
'''
# 通过str访问,且自动排除丢失/ NA值

s = pd.Series(['A','b','C','bbhello','123',np.nan,'hj'])
df = pd.DataFrame({'key1':list('abcdef'),
                  'key2':['hee','fv','w','hija','123',np.nan]})
print(s)
print(df)
print('-----')

print(s.str.count('b'))
print(df['key2'].str.upper())
print('-----')
# 直接通过.str调用字符串方法
# 可以对Series、Dataframe使用
# 自动过滤NaN值

df.columns = df.columns.str.upper()
print(df)
# df.columns是一个Index对象,也可使用.str

  输出:

0          A
1          b
2          C
3    bbhello
4        123
5        NaN
6         hj
dtype: object
  key1  key2
0    a   hee
1    b    fv
2    c     w
3    d  hija
4    e   123
5    f   NaN
-----
0    0.0
1    1.0
2    0.0
3    2.0
4    0.0
5    NaN
6    0.0
dtype: float64
0     HEE
1      FV
2       W
3    HIJA
4     123
5     NaN
Name: key2, dtype: object
-----
  KEY1  KEY2
0    a   hee
1    b    fv
2    c     w
3    d  hija
4    e   123
5    f   NaN
# 字符串常用方法(1) - lower,upper,len,startswith,endswith

s = pd.Series(['A','b','bbhello','123',np.nan])

print(s.str.lower(),'→ lower小写
')
print(s.str.upper(),'→ upper大写
')
print(s.str.len(),'→ len字符长度
')
print(s.str.startswith('b'),'→ 判断起始是否为a
')
print(s.str.endswith('3'),'→ 判断结束是否为3
')

  输出:

0          a
1          b
2    bbhello
3        123
4        NaN
dtype: object → lower小写

0          A
1          B
2    BBHELLO
3        123
4        NaN
dtype: object → upper大写

0    1.0
1    1.0
2    7.0
3    3.0
4    NaN
dtype: float64 → len字符长度

0    False
1     True
2     True
3    False
4      NaN
dtype: object → 判断起始是否为a

0    False
1    False
2    False
3     True
4      NaN
dtype: object → 判断结束是否为3
# 字符串常用方法(2) - strip

s = pd.Series([' jack', 'jill ', ' jesse ', 'frank'])
df = pd.DataFrame(np.random.randn(3, 2), columns=[' Column A ', ' Column B '],
                  index=range(3))
print(s)
print(df)
print('-----')

print(s.str.strip())  # 去除字符串中的空格
print(s.str.lstrip())  # 去除字符串中的左空格
print(s.str.rstrip())  # 去除字符串中的右空格

df.columns = df.columns.str.strip()
print(df)
# 这里去掉了columns的前后空格,但没有去掉中间空格

  输出:

0       jack
1      jill 
2     jesse 
3      frank
dtype: object
    Column A    Column B 
0    0.647766    0.094747
1    0.342940   -0.660643
2    1.183315   -0.143729
-----
0     jack
1     jill
2    jesse
3    frank
dtype: object
0      jack
1     jill 
2    jesse 
3     frank
dtype: object
0      jack
1      jill
2     jesse
3     frank
dtype: object
   Column A  Column B
0  0.647766  0.094747
1  0.342940 -0.660643
2  1.183315 -0.143729
# 字符串常用方法(3) - replace

df = pd.DataFrame(np.random.randn(3, 2), columns=[' Column A ', ' Column B '],
                  index=range(3))
df.columns = df.columns.str.replace(' ','-')
print(df)
# 替换

df.columns = df.columns.str.replace('-','hehe',n=1)
print(df)
# n:替换个数

  输出:

   -Column-A-  -Column-B-
0    1.855227   -0.519479
1   -0.400376   -0.421383
2   -0.293797   -0.432481
   heheColumn-A-  heheColumn-B-
0       1.855227      -0.519479
1      -0.400376      -0.421383
2      -0.293797      -0.432481
# 字符串常用方法(4) - split、rsplit

s = pd.Series(['a,b,c','1,2,3',['a,,,c'],np.nan])
print(s.str.split(','))
print('-----')
# 类似字符串的split

print(s.str.split(',')[0])
print('-----')
# 直接索引得到一个list

print(s.str.split(',').str[0])
print(s.str.split(',').str.get(1))
print('-----')
# 可以使用get或[]符号访问拆分列表中的元素

print(s.str.split(',', expand=True))
print(s.str.split(',', expand=True, n = 1))
print(s.str.rsplit(',', expand=True, n = 1))
print('-----')
# 可以使用expand可以轻松扩展此操作以返回DataFrame
# n参数限制分割数
# rsplit类似于split,反向工作,即从字符串的末尾到字符串的开头

df = pd.DataFrame({'key1':['a,b,c','1,2,3',[':,., ']],
                  'key2':['a-b-c','1-2-3',[':-.- ']]})
print(df['key2'].str.split('-'))
# Dataframe使用split

  输出:

0    [a, b, c]
1    [1, 2, 3]
2          NaN
3          NaN
dtype: object
-----
['a', 'b', 'c']
-----
0      a
1      1
2    NaN
3    NaN
dtype: object
0      b
1      2
2    NaN
3    NaN
dtype: object
-----
     0     1     2
0    a     b     c
1    1     2     3
2  NaN  None  None
3  NaN  None  None
     0     1
0    a   b,c
1    1   2,3
2  NaN  None
3  NaN  None
     0     1
0  a,b     c
1  1,2     3
2  NaN  None
3  NaN  None
-----
0    [a, b, c]
1    [1, 2, 3]
2          NaN
Name: key2, dtype: object
# 字符串索引

s = pd.Series(['A','b','C','bbhello','123',np.nan,'hj'])
df = pd.DataFrame({'key1':list('abcdef'),
                  'key2':['hee','fv','w','hija','123',np.nan]})

print(s.str[0])  # 取第一个字符串
print(s.str[:2])  # 取前两个字符串
print(df['key2'].str[0]) 
# str之后和字符串本身索引方式相同

  输出:

0      A
1      b
2      C
3      b
4      1
5    NaN
6      h
dtype: object
0      A
1      b
2      C
3     bb
4     12
5    NaN
6     hj
dtype: object
0      h
1      f
2      w
3      h
4      1
5    NaN
Name: key2, dtype: object
'''
【课程2.16】  合并 merge、join

Pandas具有全功能的,高性能内存中连接操作,与SQL等关系数据库非常相似

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False)
 
'''
# merge合并 → 类似excel的vlookup

df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                     'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3']})
df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
df3 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
df4 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                    'key2': ['K0', 'K0', 'K0', 'K0'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']})
print(pd.merge(df1, df2, on='key'))
print('------')
# left:第一个df
# right:第二个df
# on:参考键

print(pd.merge(df3, df4, on=['key1','key2']))
# 多个链接键

  输出:

   A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K2  C2  D2
3  A3  B3  K3  C3  D3
------
    A   B key1 key2   C   D
0  A0  B0   K0   K0  C0  D0
1  A2  B2   K1   K0  C1  D1
2  A2  B2   K1   K0  C2  D2
# 参数how → 合并方式

print(pd.merge(df3, df4,on=['key1','key2'], how = 'inner'))  
print('------')
# inner:默认,取交集

print(pd.merge(df3, df4, on=['key1','key2'], how = 'outer'))  
print('------')
# outer:取并集,数据缺失范围NaN

print(pd.merge(df3, df4, on=['key1','key2'], how = 'left'))  
print('------')
# left:按照df3为参考合并,数据缺失范围NaN

print(pd.merge(df3, df4, on=['key1','key2'], how = 'right'))  
# right:按照df4为参考合并,数据缺失范围NaN

  输出:

   A   B key1 key2   C   D
0  A0  B0   K0   K0  C0  D0
1  A2  B2   K1   K0  C1  D1
2  A2  B2   K1   K0  C2  D2
------
     A    B key1 key2    C    D
0   A0   B0   K0   K0   C0   D0
1   A1   B1   K0   K1  NaN  NaN
2   A2   B2   K1   K0   C1   D1
3   A2   B2   K1   K0   C2   D2
4   A3   B3   K2   K1  NaN  NaN
5  NaN  NaN   K2   K0   C3   D3
------
    A   B key1 key2    C    D
0  A0  B0   K0   K0   C0   D0
1  A1  B1   K0   K1  NaN  NaN
2  A2  B2   K1   K0   C1   D1
3  A2  B2   K1   K0   C2   D2
4  A3  B3   K2   K1  NaN  NaN
------
     A    B key1 key2   C   D
0   A0   B0   K0   K0  C0  D0
1   A2   B2   K1   K0  C1  D1
2   A2   B2   K1   K0  C2  D2
3  NaN  NaN   K2   K0  C3  D3
# 参数 left_on, right_on, left_index, right_index → 当键不为一个列时,可以单独设置左键与右键

df1 = pd.DataFrame({'lkey':list('bbacaab'),
                   'data1':range(7)})
df2 = pd.DataFrame({'rkey':list('abd'),
                   'date2':range(3)})
print(pd.merge(df1, df2, left_on='lkey', right_on='rkey'))
print('------')
# df1以‘lkey’为键,df2以‘rkey’为键

df1 = pd.DataFrame({'key':list('abcdfeg'),
                   'data1':range(7)})
df2 = pd.DataFrame({'date2':range(100,105)},
                  index = list('abcde'))
print(pd.merge(df1, df2, left_on='key', right_index=True))
# df1以‘key’为键,df2以index为键
# left_index:为True时,第一个df以index为键,默认False
# right_index:为True时,第二个df以index为键,默认False

# 所以left_on, right_on, left_index, right_index可以相互组合:
# left_on + right_on, left_on + right_index, left_index + right_on, left_index + right_index

  输出:

  data1 lkey  date2 rkey
0      0    b      1    b
1      1    b      1    b
2      6    b      1    b
3      2    a      0    a
4      4    a      0    a
5      5    a      0    a
------
   data1 key  date2
0      0   a    100
1      1   b    101
2      2   c    102
3      3   d    103
5      5   e    104
# 参数 sort

df1 = pd.DataFrame({'key':list('bbacaab'),
                   'data1':[1,3,2,4,5,9,7]})
df2 = pd.DataFrame({'key':list('abd'),
                   'date2':[11,2,33]})
x1 = pd.merge(df1,df2, on = 'key', how = 'outer')
x2 = pd.merge(df1,df2, on = 'key', sort=True, how = 'outer')
print(x1)
print(x2)
print('------')
# sort:按照字典顺序通过 连接键 对结果DataFrame进行排序。默认为False,设置为False会大幅提高性能

print(x2.sort_values('data1'))
# 也可直接用Dataframe的排序方法:sort_values,sort_index

  输出:

   data1 key  date2
0    1.0   b    2.0
1    3.0   b    2.0
2    7.0   b    2.0
3    2.0   a   11.0
4    5.0   a   11.0
5    9.0   a   11.0
6    4.0   c    NaN
7    NaN   d   33.0
   data1 key  date2
0    2.0   a   11.0
1    5.0   a   11.0
2    9.0   a   11.0
3    1.0   b    2.0
4    3.0   b    2.0
5    7.0   b    2.0
6    4.0   c    NaN
7    NaN   d   33.0
------
   data1 key  date2
3    1.0   b    2.0
0    2.0   a   11.0
4    3.0   b    2.0
6    4.0   c    NaN
1    5.0   a   11.0
5    7.0   b    2.0
2    9.0   a   11.0
7    NaN   d   33.0
# pd.join() → 直接通过索引链接

left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                     'B': ['B0', 'B1', 'B2']},
                    index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
                      'D': ['D0', 'D2', 'D3']},
                     index=['K0', 'K2', 'K3'])
print(left)
print(right)
print(left.join(right))
print(left.join(right, how='outer'))  
print('-----')
# 等价于:pd.merge(left, right, left_index=True, right_index=True, how='outer')

df1 = pd.DataFrame({'key':list('bbacaab'),
                   'data1':[1,3,2,4,5,9,7]})
df2 = pd.DataFrame({'key':list('abd'),
                   'date2':[11,2,33]})
print(df1)
print(df2)
print(pd.merge(df1, df2, left_index=True, right_index=True, suffixes=('_1', '_2')))  
print(df1.join(df2['date2']))
print('-----')
# suffixes=('_x', '_y')默认

left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                     'key': ['K0', 'K1', 'K0', 'K1']})
right = pd.DataFrame({'C': ['C0', 'C1'],
                      'D': ['D0', 'D1']},
                     index=['K0', 'K1'])
print(left)
print(right)
print(left.join(right, on = 'key'))
# 等价于pd.merge(left, right, left_on='key', right_index=True, how='left', sort=False);
# left的‘key’和right的index

  输出:

     A   B
K0  A0  B0
K1  A1  B1
K2  A2  B2
     C   D
K0  C0  D0
K2  C2  D2
K3  C3  D3
     A   B    C    D
K0  A0  B0   C0   D0
K1  A1  B1  NaN  NaN
K2  A2  B2   C2   D2
      A    B    C    D
K0   A0   B0   C0   D0
K1   A1   B1  NaN  NaN
K2   A2   B2   C2   D2
K3  NaN  NaN   C3   D3
-----
   data1 key
0      1   b
1      3   b
2      2   a
3      4   c
4      5   a
5      9   a
6      7   b
   date2 key
0     11   a
1      2   b
2     33   d
   data1 key_1  date2 key_2
0      1     b     11     a
1      3     b      2     b
2      2     a     33     d
   data1 key  date2
0      1   b   11.0
1      3   b    2.0
2      2   a   33.0
3      4   c    NaN
4      5   a    NaN
5      9   a    NaN
6      7   b    NaN
-----
    A   B key
0  A0  B0  K0
1  A1  B1  K1
2  A2  B2  K0
3  A3  B3  K1
     C   D
K0  C0  D0
K1  C1  D1
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K0  C0  D0
3  A3  B3  K1  C1  D1
'''
【课程2.17】  连接与修补 concat、combine_first

连接 - 沿轴执行连接操作

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
          keys=None, levels=None, names=None, verify_integrity=False,
          copy=True)
 
'''
# 连接:concat

s1 = pd.Series([1,2,3])
s2 = pd.Series([2,3,4])
s3 = pd.Series([1,2,3],index = ['a','c','h'])
s4 = pd.Series([2,3,4],index = ['b','e','d'])
print(pd.concat([s1,s2]))
print(pd.concat([s3,s4]).sort_index())
print('-----')
# 默认axis=0,行+行

print(pd.concat([s3,s4], axis=1))
print('-----')
# axis=1,列+列,成为一个Dataframe

  输出:

0    1
1    2
2    3
0    2
1    3
2    4
dtype: int64
a    1
b    2
c    2
d    4
e    3
h    3
dtype: int64
-----
     0    1
a  1.0  NaN
b  NaN  2.0
c  2.0  NaN
d  NaN  4.0
e  NaN  3.0
h  3.0  NaN
-----
# 连接方式:join,join_axes

s5 = pd.Series([1,2,3],index = ['a','b','c'])
s6 = pd.Series([2,3,4],index = ['b','c','d'])
print(pd.concat([s5,s6], axis= 1))
print(pd.concat([s5,s6], axis= 1, join='inner'))
print(pd.concat([s5,s6], axis= 1, join_axes=[['a','b','d']]))
# join:{'inner''outer'},默认为“outer”。如何处理其他轴上的索引。outer为联合和inner为交集。
# join_axes:指定联合的index

  输出:

     0    1
a  1.0  NaN
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0
   0  1
b  2  2
c  3  3
     0    1
a  1.0  NaN
b  2.0  2.0
d  NaN  4.0
# 覆盖列名

sre = pd.concat([s5,s6], keys = ['one','two'])
print(sre,type(sre))
print(sre.index)
print('-----')
# keys:序列,默认值无。使用传递的键作为最外层构建层次索引

sre = pd.concat([s5,s6], axis=1, keys = ['one','two'])
print(sre,type(sre))
# axis = 1, 覆盖列名

  输出:

one  a    1
     b    2
     c    3
two  b    2
     c    3
     d    4
dtype: int64 <class 'pandas.core.series.Series'>
MultiIndex(levels=[['one', 'two'], ['a', 'b', 'c', 'd']],
           labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 1, 2, 3]])
-----
   one  two
a  1.0  NaN
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0 <class 'pandas.core.frame.DataFrame'>
# 修补 pd.combine_first()

df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],[np.nan, 7., np.nan]])
df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],index=[1, 2])
print(df1)
print(df2)
print(df1.combine_first(df2))
print('-----')
# 根据index,df1的空值被df2替代
# 如果df2的index多于df1,则更新到df1上,比如index=['a',1]

df1.update(df2)
print(df1)
# update,直接df2覆盖df1,相同index位置

  输出:

     0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN  NaN
2  NaN  7.0  NaN
      0    1    2
1 -42.6  NaN -8.2
2  -5.0  1.6  4.0
     0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN -8.2
2 -5.0  7.0  4.0
-----
      0    1    2
0   NaN  3.0  5.0
1 -42.6  NaN -8.2
2  -5.0  1.6  4.0
'''
【课程2.18】  去重及替换

.duplicated / .replace
 
'''
# 去重 .duplicated

s = pd.Series([1,1,1,1,2,2,2,3,4,5,5,5,5])
print(s.duplicated())
print(s[s.duplicated() == False])
print('-----')
# 判断是否重复
# 通过布尔判断,得到不重复的值

s_re = s.drop_duplicates()
print(s_re)
print('-----')
# drop.duplicates移除重复
# inplace参数:是否替换原值,默认False

df = pd.DataFrame({'key1':['a','a',3,4,5],
                  'key2':['a','a','b','b','c']})
print(df.duplicated())
print(df['key2'].duplicated())
# Dataframe中使用duplicated

  输出:

0     False
1      True
2      True
3      True
4     False
5      True
6      True
7     False
8     False
9     False
10     True
11     True
12     True
dtype: bool
0    1
4    2
7    3
8    4
9    5
dtype: int64
-----
0    1
4    2
7    3
8    4
9    5
dtype: int64
-----
0    False
1     True
2    False
3    False
4    False
dtype: bool
0    False
1     True
2    False
3     True
4    False
Name: key2, dtype: bool

  

# 替换 .replace

s = pd.Series(list('ascaazsd'))
print(s.replace('a', np.nan))
print(s.replace(['a','s'] ,np.nan))
print(s.replace({'a':'hello world!','s':123}))
# 可一次性替换一个值或多个值
# 可传入列表或字典

  输出:

0    NaN
1      s
2      c
3    NaN
4    NaN
5      z
6      s
7      d
dtype: object
0    NaN
1    NaN
2      c
3    NaN
4    NaN
5      z
6    NaN
7      d
dtype: object
0    hello world!
1             123
2               c
3    hello world!
4    hello world!
5               z
6             123
7               d
dtype: object
'''
【课程2.19】  数据分组

分组统计 - groupby功能

① 根据某些条件将数据拆分成组
② 对每个组独立应用函数
③ 将结果合并到一个数据结构中

Dataframe在行(axis=0)或列(axis=1)上进行分组,将一个函数应用到各个分组并产生一个新值,然后函数执行结果被合并到最终的结果对象中。

df.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
 
'''
# 分组

df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
                   'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                   'C' : np.random.randn(8),
                   'D' : np.random.randn(8)})
print(df)
print('------')

print(df.groupby('A'), type(df.groupby('A')))
print('------')
# 直接分组得到一个groupby对象,是一个中间数据,没有进行计算

a = df.groupby('A').mean()
b = df.groupby(['A','B']).mean()
c = df.groupby(['A'])['D'].mean()  # 以A分组,算D的平均值
print(a,type(a),'
',a.columns)
print(b,type(b),'
',b.columns)
print(c,type(c))
# 通过分组后的计算,得到一个新的dataframe
# 默认axis = 0,以行来分组
# 可单个或多个([])列分组

  输出:

     A      B         C         D
0  foo    one  0.891765 -1.121156
1  bar    one -1.272769  1.188977
2  foo    two  0.198131  0.543673
3  bar  three -0.827655 -1.608699
4  foo    two -1.114089 -0.696145
5  bar    two -0.345336  0.718507
6  foo    one -0.207091 -0.922269
7  foo  three -0.431760 -0.123696
------
<pandas.core.groupby.DataFrameGroupBy object at 0x0000000004B65E10> <class 'pandas.core.groupby.DataFrameGroupBy'>
------
            C         D
A                      
bar -0.815253  0.099595
foo -0.132609 -0.463918 <class 'pandas.core.frame.DataFrame'> 
 Index(['C', 'D'], dtype='object')
                  C         D
A   B                        
bar one   -1.272769  1.188977
    three -0.827655 -1.608699
    two   -0.345336  0.718507
foo one    0.342337 -1.021713
    three -0.431760 -0.123696
    two   -0.457979 -0.076236 <class 'pandas.core.frame.DataFrame'> 
 Index(['C', 'D'], dtype='object')
A
bar    0.099595
foo   -0.463918
Name: D, dtype: float64 <class 'pandas.core.series.Series'>
# 分组 - 可迭代对象

df = pd.DataFrame({'X' : ['A', 'B', 'A', 'B'], 'Y' : [1, 4, 3, 2]})
print(df)
print(df.groupby('X'), type(df.groupby('X')))
print('-----')

print(list(df.groupby('X')), '→ 可迭代对象,直接生成list
')
print(list(df.groupby('X'))[0], '→ 以元祖形式显示
')
for n,g in df.groupby('X'):
    print(n)
    print(g)
    print('###')
print('-----')
# n是组名,g是分组后的Dataframe

print(df.groupby(['X']).get_group('A'),'
')
print(df.groupby(['X']).get_group('B'),'
')
print('-----')
# .get_group()提取分组后的组

grouped = df.groupby(['X'])
print(grouped.groups)
print(grouped.groups['A'])  # 也可写:df.groupby('X').groups['A']
print('-----')
# .groups:将分组后的groups转为dict
# 可以字典索引方法来查看groups里的元素

sz = grouped.size()
print(sz,type(sz))
print('-----')
# .size():查看分组后的长度

df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
                   'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                   'C' : np.random.randn(8),
                   'D' : np.random.randn(8)})
grouped = df.groupby(['A','B']).groups
print(df)
print(grouped)
print(grouped[('foo', 'three')])
# 按照两个列进行分组

  输出:

  X  Y
0  A  1
1  B  4
2  A  3
3  B  2
<pandas.core.groupby.DataFrameGroupBy object at 0x00000000091B6F28> <class 'pandas.core.groupby.DataFrameGroupBy'>
-----
[('A',    X  Y
0  A  1
2  A  3), ('B',    X  Y
1  B  4
3  B  2)] → 可迭代对象,直接生成list

('A',    X  Y
0  A  1
2  A  3) → 以元祖形式显示

A
   X  Y
0  A  1
2  A  3
###
B
   X  Y
1  B  4
3  B  2
###
-----
   X  Y
0  A  1
2  A  3 

   X  Y
1  B  4
3  B  2 

-----
{'B': [1, 3], 'A': [0, 2]}
[0, 2]
-----
X
A    2
B    2
dtype: int64 <class 'pandas.core.series.Series'>
-----
     A      B         C         D
0  foo    one -0.668695  0.247781
1  bar    one -0.125374  2.259134
2  foo    two -0.112052  1.618603
3  bar  three -0.098986  0.150488
4  foo    two  0.912286 -1.260029
5  bar    two  1.096757 -0.571223
6  foo    one -0.090907 -1.671482
7  foo  three  0.088176 -0.292702
{('bar', 'two'): [5], ('foo', 'two'): [2, 4], ('bar', 'one'): [1], ('foo', 'three'): [7], ('bar', 'three'): [3], ('foo', 'one'): [0, 6]}
[7]
# 其他轴上的分组

df = pd.DataFrame({'data1':np.random.rand(2),
                  'data2':np.random.rand(2),
                  'key1':['a','b'],
                  'key2':['one','two']})
print(df)
print(df.dtypes)
print('-----')
for n,p in df.groupby(df.dtypes, axis=1):
    print(n)
    print(p)
    print('##')
# 按照值类型分列

  输出:

      data1     data2 key1 key2
0  0.454580  0.692637    a  one
1  0.496928  0.214309    b  two
data1    float64
data2    float64
key1      object
key2      object
dtype: object
-----
float64
      data1     data2
0  0.454580  0.692637
1  0.496928  0.214309
##
object
  key1 key2
0    a  one
1    b  two
##
# 通过字典或者Series分组

df = pd.DataFrame(np.arange(16).reshape(4,4),
                  columns = ['a','b','c','d'])
print(df)
print('-----')

mapping = {'a':'one','b':'one','c':'two','d':'two','e':'three'}
by_column = df.groupby(mapping, axis = 1)
print(by_column.sum())
print('-----')
# mapping中,a、b列对应的为one,c、d列对应的为two,以字典来分组

s = pd.Series(mapping)
print(s,'
')
print(s.groupby(s).count())
# s中,index中a、b对应的为one,c、d对应的为two,以Series来分组

  输出:

    a   b   c   d
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
-----
   one  two
0    1    5
1    9   13
2   17   21
3   25   29
-----
a      one
b      one
c      two
d      two
e    three
dtype: object 

one      2
three    1
two      2
dtype: int64
# 通过函数分组

df = pd.DataFrame(np.arange(16).reshape(4,4),
                  columns = ['a','b','c','d'],
                 index = ['abc','bcd','aa','b'])
print(df,'
')
print(df.groupby(len).sum())
# 按照字母长度分组

  输出:

     a   b   c   d
abc   0   1   2   3
bcd   4   5   6   7
aa    8   9  10  11
b    12  13  14  15 

    a   b   c   d
1  12  13  14  15
2   8   9  10  11
3   4   6   8  10
# 分组计算函数方法

s = pd.Series([1, 2, 3, 10, 20, 30], index = [1, 2, 3, 1, 2, 3])
grouped = s.groupby(level=0)  # 唯一索引用.groupby(level=0),将同一个index的分为一组
print(grouped)
print(grouped.first(),'→ first:非NaN的第一个值
')
print(grouped.last(),'→ last:非NaN的最后一个值
')
print(grouped.sum(),'→ sum:非NaN的和
')
print(grouped.mean(),'→ mean:非NaN的平均值
')
print(grouped.median(),'→ median:非NaN的算术中位数
')
print(grouped.count(),'→ count:非NaN的值
')
print(grouped.min(),'→ min、max:非NaN的最小值、最大值
')
print(grouped.std(),'→ std,var:非NaN的标准差和方差
')
print(grouped.prod(),'→ prod:非NaN的积
')

  输出:

<pandas.core.groupby.SeriesGroupBy object at 0x00000000091992B0>
1    1
2    2
3    3
dtype: int64 → first:非NaN的第一个值

1    10
2    20
3    30
dtype: int64 → last:非NaN的最后一个值

1    11
2    22
3    33
dtype: int64 → sum:非NaN的和

1     5.5
2    11.0
3    16.5
dtype: float64 → mean:非NaN的平均值

1     5.5
2    11.0
3    16.5
dtype: float64 → median:非NaN的算术中位数

1    2
2    2
3    2
dtype: int64 → count:非NaN的值

1    1
2    2
3    3
dtype: int64 → min、max:非NaN的最小值、最大值

1     6.363961
2    12.727922
3    19.091883
dtype: float64 → std,var:非NaN的标准差和方差

1    10
2    40
3    90
dtype: int64 → prod:非NaN的积
# 多函数计算:agg()

df = pd.DataFrame({'a':[1,1,2,2],
                  'b':np.random.rand(4),
                  'c':np.random.rand(4),
                  'd':np.random.rand(4),})
print(df)
print(df.groupby('a').agg(['mean',np.sum]))
print(df.groupby('a')['b'].agg({'result1':np.mean,
                               'result2':np.sum}))
# 函数写法可以用str,或者np.方法
# 可以通过list,dict传入,当用dict时,key名为columns

  输出:

   a         b         c         d
0  1  0.357911  0.318324  0.627797
1  1  0.964829  0.500017  0.570063
2  2  0.116608  0.194164  0.049509
3  2  0.933123  0.542615  0.718640
          b                   c                   d         
       mean       sum      mean       sum      mean      sum
a                                                           
1  0.661370  1.322739  0.409171  0.818341  0.598930  1.19786
2  0.524865  1.049730  0.368390  0.736780  0.384075  0.76815
    result2   result1
a                    
1  1.322739  0.661370
2  1.049730  0.524865
'''
【课程2.20】  分组转换及一般性“拆分-应用-合并”

transform / apply
 
'''
# 数据分组转换,transform

df = pd.DataFrame({'data1':np.random.rand(5),
                  'data2':np.random.rand(5),
                  'key1':list('aabba'),
                  'key2':['one','two','one','two','one']})
k_mean = df.groupby('key1').mean()
print(df)
print(k_mean)
print(pd.merge(df,k_mean,left_on='key1',right_index=True).add_prefix('mean_'))  # .add_prefix('mean_'):添加前缀
print('-----')
# 通过分组、合并,得到一个包含均值的Dataframe

print(df.groupby('key2').mean()) # 按照key2分组求均值
print(df.groupby('key2').transform(np.mean))
# data1、data2每个位置元素取对应分组列的均值
# 字符串不能进行计算

  输出:

     data1     data2 key1 key2
0  0.003727  0.390301    a  one
1  0.744777  0.130300    a  two
2  0.887207  0.679309    b  one
3  0.448585  0.169208    b  two
4  0.448045  0.993775    a  one
         data1     data2
key1                    
a     0.398850  0.504792
b     0.667896  0.424258
   mean_data1_x  mean_data2_x mean_key1 mean_key2  mean_data1_y  mean_data2_y
0      0.003727      0.390301         a       one      0.398850      0.504792
1      0.744777      0.130300         a       two      0.398850      0.504792
4      0.448045      0.993775         a       one      0.398850      0.504792
2      0.887207      0.679309         b       one      0.667896      0.424258
3      0.448585      0.169208         b       two      0.667896      0.424258
-----
         data1     data2
key2                    
one   0.446326  0.687795
two   0.596681  0.149754
      data1     data2
0  0.446326  0.687795
1  0.596681  0.149754
2  0.446326  0.687795
3  0.596681  0.149754
4  0.446326  0.687795
# 一般化Groupby方法:apply

df = pd.DataFrame({'data1':np.random.rand(5),
                  'data2':np.random.rand(5),
                  'key1':list('aabba'),
                  'key2':['one','two','one','two','one']})

print(df.groupby('key1').apply(lambda x: x.describe()))
# apply直接运行其中的函数
# 这里为匿名函数,直接描述分组后的统计量

def f_df1(d,n):
    return(d.sort_index()[:n])
def f_df2(d,k1):
    return(d[k1])
print(df.groupby('key1').apply(f_df1,2),'
')
print(df.groupby('key1').apply(f_df2,'data2'))
print(type(df.groupby('key1').apply(f_df2,'data2')))
# f_df1函数:返回排序后的前n行数据
# f_df2函数:返回分组后表的k1列,结果为Series,层次化索引
# 直接运行f_df函数
# 参数直接写在后面,也可以为.apply(f_df,n = 2))

  输出:

               data1     data2
key1                          
a    count  3.000000  3.000000
     mean   0.561754  0.233470
     std    0.313439  0.337209
     min    0.325604  0.026906
     25%    0.383953  0.038906
     50%    0.442303  0.050906
     75%    0.679829  0.336753
     max    0.917355  0.622599
b    count  2.000000  2.000000
     mean   0.881906  0.547206
     std    0.079357  0.254051
     min    0.825791  0.367564
     25%    0.853849  0.457385
     50%    0.881906  0.547206
     75%    0.909963  0.637026
     max    0.938020  0.726847
           data1     data2 key1 key2
key1                                
a    0  0.325604  0.050906    a  one
     1  0.917355  0.622599    a  two
b    2  0.825791  0.726847    b  one
     3  0.938020  0.367564    b  two 

key1   
a     0    0.050906
      1    0.622599
      4    0.026906
b     2    0.726847
      3    0.367564
Name: data2, dtype: float64
<class 'pandas.core.series.Series'>
'''
【课程2.21】  透视表及交叉表

类似excel数据透视 - pivot table / crosstab
 
'''
# 透视表:pivot_table
# pd.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

date = ['2017-5-1','2017-5-2','2017-5-3']*3
rng = pd.to_datetime(date)
df = pd.DataFrame({'date':rng,
                   'key':list('abcdabcda'),
                  'values':np.random.rand(9)*10})
print(df)
print('-----')

print(pd.pivot_table(df, values = 'values', index = 'date', columns = 'key', aggfunc=np.sum))  # 也可以写 aggfunc='sum'
print('-----')
# data:DataFrame对象
# values:要聚合的列或列的列表
# index:数据透视表的index,从原数据的列中筛选
# columns:数据透视表的columns,从原数据的列中筛选
# aggfunc:用于聚合的函数,默认为numpy.mean,支持numpy计算方法

print(pd.pivot_table(df, values = 'values', index = ['date','key'], aggfunc=len))
print('-----')
# 这里就分别以date、key共同做数据透视,值为values:统计不同(date,key)情况下values的平均值
# aggfunc=len(或者count):计数

  输出:

        date key    values
0 2017-05-01   a  5.886424
1 2017-05-02   b  9.906472
2 2017-05-03   c  8.617297
3 2017-05-01   d  8.972318
4 2017-05-02   a  7.990905
5 2017-05-03   b  8.131856
6 2017-05-01   c  2.823731
7 2017-05-02   d  2.394605
8 2017-05-03   a  0.667917
-----
key                a         b         c         d
date                                              
2017-05-01  5.886424       NaN  2.823731  8.972318
2017-05-02  7.990905  9.906472       NaN  2.394605
2017-05-03  0.667917  8.131856  8.617297       NaN
-----
date        key
2017-05-01  a      1.0
            c      1.0
            d      1.0
2017-05-02  a      1.0
            b      1.0
            d      1.0
2017-05-03  a      1.0
            b      1.0
            c      1.0
Name: values, dtype: float64
-----
# 交叉表:crosstab
# 默认情况下,crosstab计算因子的频率表,比如用于str的数据透视分析
# pd.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)

df = pd.DataFrame({'A': [1, 2, 2, 2, 2],
                   'B': [3, 3, 4, 4, 4],
                   'C': [1, 1, np.nan, 1, 1]})
print(df)
print('-----')

print(pd.crosstab(df['A'],df['B']))
print('-----')
# 如果crosstab只接收两个Series,它将提供一个频率表。
# 用A的唯一值,统计B唯一值的出现次数

print(pd.crosstab(df['A'],df['B'],normalize=True))
print('-----')
# normalize:默认False,将所有值除以值的总和进行归一化 → 为True时候显示百分比

print(pd.crosstab(df['A'],df['B'],values=df['C'],aggfunc=np.sum))
print('-----')
# values:可选,根据因子聚合的值数组
# aggfunc:可选,如果未传递values数组,则计算频率表,如果传递数组,则按照指定计算
# 这里相当于以A和B界定分组,计算出每组中第三个系列C的值

print(pd.crosstab(df['A'],df['B'],values=df['C'],aggfunc=np.sum, margins=True))
print('-----')
# margins:布尔值,默认值False,添加行/列边距(小计)

  输出:

   A  B    C
0  1  3  1.0
1  2  3  1.0
2  2  4  NaN
3  2  4  1.0
4  2  4  1.0
-----
B  3  4
A      
1  1  0
2  1  3
-----
B    3    4
A          
1  0.2  0.0
2  0.2  0.6
-----
B    3    4
A          
1  1.0  NaN
2  1.0  2.0
-----
B      3    4  All
A                 
1    1.0  NaN  1.0
2    1.0  2.0  3.0
All  2.0  2.0  4.0
-----
'''
【课程2.22】  数据读取

核心:read_table, read_csv, read_excel
 
'''
# 读取普通分隔数据:read_table
# 可以读取txt,csv

import os
os.chdir('C:/Users/Hjx/Desktop/')

data1 = pd.read_table('data1.txt', delimiter=',',header = 0, index_col=1)
print(data1)
# delimiter:用于拆分的字符,也可以用sep:sep = ','
# header:用做列名的序号,默认为0(第一行)
# index_col:指定某列为行索引,否则自动索引0, 1, .....

# read_table主要用于读取简单的数据,txt/csv

  输出:

     va1  va3  va4
va2               
2      1    3    4
3      2    4    5
4      3    5    6
5      4    6    7
# 读取csv数据:read_csv
# 先熟悉一下excel怎么导出csv

data2 = pd.read_csv('data2.csv',engine = 'python')
print(data2.head())
# engine:使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。
# encoding:指定字符集类型,即编码,通常指定为'utf-8'

# 大多数情况先将excel导出csv,再读取

  输出:

   省级政区代码 省级政区名称  地市级政区代码 地市级政区名称    年份 党委书记姓名  出生年份  出生月份  籍贯省份代码 籍贯省份名称  
0  130000    河北省   130100    石家庄市  2000    陈来立   NaN   NaN     NaN    NaN   
1  130000    河北省   130100    石家庄市  2001    吴振华   NaN   NaN     NaN    NaN   
2  130000    河北省   130100    石家庄市  2002    吴振华   NaN   NaN     NaN    NaN   
3  130000    河北省   130100    石家庄市  2003    吴振华   NaN   NaN     NaN    NaN   
4  130000    河北省   130100    石家庄市  2004    吴振华   NaN   NaN     NaN    NaN   

   ...    民族  教育 是否是党校教育(是=1,否=0) 专业:人文 专业:社科  专业:理工  专业:农科  专业:医科  入党年份  工作年份  
0  ...   NaN  硕士              1.0   NaN   NaN    NaN    NaN    NaN   NaN   NaN  
1  ...   NaN  本科              0.0   0.0   0.0    1.0    0.0    0.0   NaN   NaN  
2  ...   NaN  本科              0.0   0.0   0.0    1.0    0.0    0.0   NaN   NaN  
3  ...   NaN  本科              0.0   0.0   0.0    1.0    0.0    0.0   NaN   NaN  
4  ...   NaN  本科              0.0   0.0   0.0    1.0    0.0    0.0   NaN   NaN  

[5 rows x 23 columns]
# 读取excel数据:read_excel

data3 = pd.read_excel('地市级党委书记数据库(2000-10).xlsx',sheetname='中国人民共和国地市级党委书记数据库(2000-10)',header=0)
print(data3)
# io :文件路径。
# sheetname:返回多表使用sheetname=[0,1],若sheetname=None是返回全表 → ① int/string 返回的是dataframe ②而none和list返回的是dict
# header:指定列名行,默认0,即取第一行
# index_col:指定列为索引列,也可以使用u”strings”

  输出:

      省级政区代码    省级政区名称  地市级政区代码   地市级政区名称    年份 党委书记姓名  出生年份  出生月份  籍贯省份代码  
0     130000       河北省   130100      石家庄市  2000    陈来立   NaN   NaN     NaN   
1     130000       河北省   130100      石家庄市  2001    吴振华   NaN   NaN     NaN   
2     130000       河北省   130100      石家庄市  2002    吴振华   NaN   NaN     NaN   
3     130000       河北省   130100      石家庄市  2003    吴振华   NaN   NaN     NaN   
4     130000       河北省   130100      石家庄市  2004    吴振华   NaN   NaN     NaN   
5     130000       河北省   130100      石家庄市  2005    吴振华   NaN   NaN     NaN   
6     130000       河北省   130100      石家庄市  2006    吴振华   NaN   NaN     NaN   
7     130000       河北省   130100      石家庄市  2007    吴显国   NaN   NaN     NaN   
8     130000       河北省   130100      石家庄市  2008    吴显国   NaN   NaN     NaN   
9     130000       河北省   130100      石家庄市  2009     车俊   NaN   NaN     NaN   
10    130000       河北省   130100      石家庄市  2010    孙瑞彬   NaN   NaN     NaN   
11    130000       河北省   130200       唐山市  2000    白润璋   NaN   NaN     NaN 
原文地址:https://www.cnblogs.com/654321cc/p/9351806.html