elasticsearch节点间通信的基础transport

在前一篇中我们分析了cluster的一些元素。接下来的章节会对cluster的运作机制做详细分析。本节先分析一些transport,它是cluster间通信的基础。它有两种实现,一种是基于netty实现nettytransport,主要用于节点间的通信。另一种是localtransport,主要是用于同一个jvm上的节点通信。因为是同一个jvm上的网络模拟,localtransport实现上非常简单,实际用处也非常有限,这里就不过多说明。这一篇的重点是nettytransport。

transport顾名思义是集群通信的基本通道,无论是集群状态信息,还是搜索索引请求信息,都是通过transport传送。elasticsearch定义了tansport,tansportmessage,tansportchannel,tansportrequest,tansportresponse等所需的所有的基础接口。这里将以transport为主,分析过程中会附带介绍其它接口。首先看一下transport节点的定义,如下图所示:

NettyTransport实现了该接口。分析NettyTransport前简单说一下Netty的用法,Netty的使用需要三个模块ServerBootStrap,ClientBootStrap(v3.x)及MessageHandler。ServerBootStrap启动服务器,ClientBootStrap启动客户端并连接服务器,MessageHandler是message处理逻辑所在,也就是业务逻辑。其它详细使用请参考Netty官方文档。NettyTransport每个在doStart()方法中启动serverBootStrap,和ClientBootStrap,并绑定ip,代码如下所示:

protected void doStart() throws ElasticsearchException {
       clientBootstrap = createClientBootstrap();//根据配置启动客户端
       ……//省略了无关分代码
    createServerBootstrap(name, mergedSettings);//启动server端 bindServerBootstrap(name, mergedSettings);//绑定ip }

每一个节点都需要发送和接收,因此两者都需要启动,client和server的启动分别在相应的方法中,启动过程就是netty的启动过程,有兴趣可以去看相应方法。bindServerBootstrap(name, mergedSettings)将本地ip和断开绑定到netty同时设定好export host(export host的具体作业我也看明白也没有看到相关的绑定,需要进一步研究)。启动client及server的过程中将messagehandler注入到channelpipeline中。至此启动过程完成,但是client并未连接任何server,连接过程是在节点启动后,才连接到其它节点的。

首先看一下如何连接到node,方法代码如下所示:

public void connectToNode(DiscoveryNode node, boolean light) {
     //transport的模块必须要启动
if (!lifecycle.started()) { throw new ElasticsearchIllegalStateException("can't add nodes to a stopped transport"); }
     //获取读锁,每个节点可以和多个节点建立连接,因此这里用读锁
globalLock.readLock().lock(); try {
        //以node.id为基础获取一个锁,这保证对于每个node只能建立一次连接 connectionLock.acquire(node.id());
try { if (!lifecycle.started()) { throw new ElasticsearchIllegalStateException("can't add nodes to a stopped transport"); } NodeChannels nodeChannels = connectedNodes.get(node); if (nodeChannels != null) { return; } try { if (light) {//这里的light,就是对该节点只获取一个channel,所有类型(5种连接类型下面会说到)都使用者一个channel nodeChannels = connectToChannelsLight(node); } else { nodeChannels = new NodeChannels(new Channel[connectionsPerNodeRecovery], new Channel[connectionsPerNodeBulk], new Channel[connectionsPerNodeReg], new Channel[connectionsPerNodeState], new Channel[connectionsPerNodePing]); try { connectToChannels(nodeChannels, node); } catch (Throwable e) { logger.trace("failed to connect to [{}], cleaning dangling connections", e, node); nodeChannels.close(); throw e; } } // we acquire a connection lock, so no way there is an existing connection connectedNodes.put(node, nodeChannels); if (logger.isDebugEnabled()) { logger.debug("connected to node [{}]", node); } transportServiceAdapter.raiseNodeConnected(node); } catch (ConnectTransportException e) { throw e; } catch (Exception e) { throw new ConnectTransportException(node, "general node connection failure", e); } } finally { connectionLock.release(node.id()); } } finally { globalLock.readLock().unlock(); } }

如果不是轻连接,每个server和clien之间都有5中连接,着5中连接承担着不同的任务。连接方法的代码如下所示:

 protected void connectToChannels(NodeChannels nodeChannels, DiscoveryNode node) {
    //五种连接方式,不同的连接方式对应不同的集群操作 ChannelFuture[] connectRecovery
= new ChannelFuture[nodeChannels.recovery.length]; ChannelFuture[] connectBulk = new ChannelFuture[nodeChannels.bulk.length]; ChannelFuture[] connectReg = new ChannelFuture[nodeChannels.reg.length]; ChannelFuture[] connectState = new ChannelFuture[nodeChannels.state.length]; ChannelFuture[] connectPing = new ChannelFuture[nodeChannels.ping.length]; InetSocketAddress address = ((InetSocketTransportAddress) node.address()).address();
    //尝试建立连接
for (int i = 0; i < connectRecovery.length; i++) { connectRecovery[i] = clientBootstrap.connect(address); } for (int i = 0; i < connectBulk.length; i++) { connectBulk[i] = clientBootstrap.connect(address); } for (int i = 0; i < connectReg.length; i++) { connectReg[i] = clientBootstrap.connect(address); } for (int i = 0; i < connectState.length; i++) { connectState[i] = clientBootstrap.connect(address); } for (int i = 0; i < connectPing.length; i++) { connectPing[i] = clientBootstrap.connect(address); }     //获取每个连接的channel存入到相应的channels中便于后面使用。 try { for (int i = 0; i < connectRecovery.length; i++) { connectRecovery[i].awaitUninterruptibly((long) (connectTimeout.millis() * 1.5)); if (!connectRecovery[i].isSuccess()) { throw new ConnectTransportException(node, "connect_timeout[" + connectTimeout + "]", connectRecovery[i].getCause()); } nodeChannels.recovery[i] = connectRecovery[i].getChannel(); nodeChannels.recovery[i].getCloseFuture().addListener(new ChannelCloseListener(node)); } for (int i = 0; i < connectBulk.length; i++) { connectBulk[i].awaitUninterruptibly((long) (connectTimeout.millis() * 1.5)); if (!connectBulk[i].isSuccess()) { throw new ConnectTransportException(node, "connect_timeout[" + connectTimeout + "]", connectBulk[i].getCause()); } nodeChannels.bulk[i] = connectBulk[i].getChannel(); nodeChannels.bulk[i].getCloseFuture().addListener(new ChannelCloseListener(node)); } for (int i = 0; i < connectReg.length; i++) { connectReg[i].awaitUninterruptibly((long) (connectTimeout.millis() * 1.5)); if (!connectReg[i].isSuccess()) { throw new ConnectTransportException(node, "connect_timeout[" + connectTimeout + "]", connectReg[i].getCause()); } nodeChannels.reg[i] = connectReg[i].getChannel(); nodeChannels.reg[i].getCloseFuture().addListener(new ChannelCloseListener(node)); } for (int i = 0; i < connectState.length; i++) { connectState[i].awaitUninterruptibly((long) (connectTimeout.millis() * 1.5)); if (!connectState[i].isSuccess()) { throw new ConnectTransportException(node, "connect_timeout[" + connectTimeout + "]", connectState[i].getCause()); } nodeChannels.state[i] = connectState[i].getChannel(); nodeChannels.state[i].getCloseFuture().addListener(new ChannelCloseListener(node)); } for (int i = 0; i < connectPing.length; i++) { connectPing[i].awaitUninterruptibly((long) (connectTimeout.millis() * 1.5)); if (!connectPing[i].isSuccess()) { throw new ConnectTransportException(node, "connect_timeout[" + connectTimeout + "]", connectPing[i].getCause()); } nodeChannels.ping[i] = connectPing[i].getChannel(); nodeChannels.ping[i].getCloseFuture().addListener(new ChannelCloseListener(node)); } if (nodeChannels.recovery.length == 0) { if (nodeChannels.bulk.length > 0) { nodeChannels.recovery = nodeChannels.bulk; } else { nodeChannels.recovery = nodeChannels.reg; } } if (nodeChannels.bulk.length == 0) { nodeChannels.bulk = nodeChannels.reg; } } catch (RuntimeException e) { // clean the futures for (ChannelFuture future : ImmutableList.<ChannelFuture>builder().add(connectRecovery).add(connectBulk).add(connectReg).add(connectState).add(connectPing).build()) { future.cancel(); if (future.getChannel() != null && future.getChannel().isOpen()) { try { future.getChannel().close(); } catch (Exception e1) { // ignore } } } throw e; } }

以上就是节点建立连接的过程,每一对client和server间都会建立一定数量的不同连接。之所以要区分连接,是因为不同的操作消耗的资源不同,请求的频率也不同。对于资源消耗少请求频率高的如ping,可以建立多一些连接,来确保并发。对于消耗资源多如bulk操作,则要少建立一些连接,保证机器不被拖垮。节点的断开,这是讲相应的channel释放的过程。这里就不再做详细说明,可以参考相关源码。

总结一下nettytransport的连接过程,启动过程分别启动client和server,同时将对于的messagehandler注入,启动多次就是netty的启动过程。然后绑定server ip和断开。但是这里并没有连接,连接发送在节点启动时,节点启动会获取cluster信息,分别对集群中的节点建立上述的5种连接。这就是NettyTransport的启动和连接过程。transport还有一个很重要的功能就是发送request,及如何处理request,这些功能会在下一篇中分析。

原文地址:https://www.cnblogs.com/zziawanblog/p/6523706.html