用户态和内核态

一、 Unix/Linux的体系架构

  如上图所示,从宏观上来看,Linux操作系统的体系架构分为用户态和内核态(或者用户空间和内核)。内核从本质上看是一种软件——控制计算机的硬件资源,并提供上层应用程序运行的环境。用户态即上层应用程序的活动空间,应用程序的执行必须依托于内核提供的资源,包括CPU资源、存储资源、I/O资源等。为了使上层应用能够访问到这些资源,内核必须为上层应用提供访问的接口:即系统调用。

  系统调用是操作系统的最小功能单位,这些系统调用根据不同的应用场景可以进行扩展和裁剪,现在各种版本的Unix实现都提供了不同数量的系统调用,如Linux的不同版本提供了240-260个系统调用,FreeBSD大约提供了320个(reference:UNIX环境高级编程)。我们可以把系统调用看成是一种不能再化简的操作(类似于原子操作,但是不同概念),有人把它比作一个汉字的一个“笔画”,而一个“汉字”就代表一个上层应用,我觉得这个比喻非常贴切。因此,有时候如果要实现一个完整的汉字(给某个变量分配内存空间),就必须调用很多的系统调用。如果从实现者(程序员)的角度来看,这势必会加重程序员的负担,良好的程序设计方法是:重视上层的业务逻辑操作,而尽可能避免底层复杂的实现细节。库函数正是为了将程序员从复杂的细节中解脱出来而提出的一种有效方法。它实现对系统调用的封装,将简单的业务逻辑接口呈现给用户,方便用户调用,从这个角度上看,库函数就像是组成汉字的“偏旁”。这样的一种组成方式极大增强了程序设计的灵活性,对于简单的操作,我们可以直接调用系统调用来访问资源,如“人”,对于复杂操作,我们借助于库函数来实现,如“仁”。显然,这样的库函数依据不同的标准也可以有不同的实现版本,如ISO C 标准库,POSIX标准库等。

  Shell是一个特殊的应用程序,俗称命令行,本质上是一个命令解释器,它下通系统调用,上通各种应用,通常充当着一种“胶水”的角色,来连接各个小功能程序,让不同程序能够以一个清晰的接口协同工作,从而增强各个程序的功能。同时,Shell是可编程的,它可以执行符合Shell语法的文本,这样的文本称为Shell脚本,通常短短的几行Shell脚本就可以实现一个非常大的功能,原因就是这些Shell语句通常都对系统调用做了一层封装。为了方便用户和系统交互,一般,一个Shell对应一个终端,终端是一个硬件设备,呈现给用户的是一个图形化窗口。我们可以通过这个窗口输入或者输出文本。这个文本直接传递给shell进行分析解释,然后执行。

  总结一下,用户态的应用程序可以通过三种方式来访问内核态的资源:

1)系统调用

2)库函数

3)Shell脚本

  下图是对上图的一个细分结构,从这个图上可以更进一步对内核所做的事有一个“全景式”的印象。主要表现为:向下控制硬件资源,向内管理操作系统资源:包括进程的调度和管理、内存的管理、文件系统的管理、设备驱动程序的管理以及网络资源的管理,向上则向应用程序提供系统调用的接口。从整体上来看,整个操作系统分为两层:用户态和内核态,这种分层的架构极大地提高了资源管理的可扩展性和灵活性,而且方便用户对资源的调用和集中式的管理,带来一定的安全性。

二、用户态和内核态的切换

  因为操作系统的资源是有限的,如果访问资源的操作过多,必然会消耗过多的资源,而且如果不对这些操作加以区分,很可能造成资源访问的冲突。所以,为了减少有限资源的访问和使用冲突,Unix/Linux的设计哲学之一就是:对不同的操作赋予不同的执行等级,就是所谓特权的概念。简单说就是有多大能力做多大的事,与系统相关的一些特别关键的操作必须由最高特权的程序来完成。Intel的X86架构的CPU提供了0到3四个特权级,数字越小,特权越高,Linux操作系统中主要采用了0和3两个特权级,分别对应的就是内核态和用户态。运行于用户态的进程可以执行的操作和访问的资源都会受到极大的限制,而运行在内核态的进程则可以执行任何操作并且在资源的使用上没有限制。很多程序开始时运行于用户态,但在执行的过程中,一些操作需要在内核权限下才能执行,这就涉及到一个从用户态切换到内核态的过程。比如C函数库中的内存分配函数malloc(),它具体是使用sbrk()系统调用来分配内存,当malloc调用sbrk()的时候就涉及一次从用户态到内核态的切换,类似的函数还有printf(),调用的是wirte()系统调用来输出字符串,等等。

  到底在什么情况下会发生从用户态到内核态的切换,一般存在以下三种情况:

1)当然就是系统调用:原因如上的分析。

2)异常事件: 当CPU正在执行运行在用户态的程序时,突然发生某些预先不可知的异常事件,这个时候就会触发从当前用户态执行的进程转向内核态执行相关的异常事件,典型的如缺页异常。

3)外围设备的中断:当外围设备完成用户的请求操作后,会像CPU发出中断信号,此时,CPU就会暂停执行下一条即将要执行的指令,转而去执行中断信号对应的处理程序,如果先前执行的指令是在用户态下,则自然就发生从用户态到内核态的转换。

  注意:系统调用的本质其实也是中断,相对于外围设备的硬中断,这种中断称为软中断,这是操作系统为用户特别开放的一种中断,如Linux int 80h中断。所以,从触发方式和效果上来看,这三种切换方式是完全一样的,都相当于是执行了一个中断响应的过程。但是从触发的对象来看,系统调用是进程主动请求切换的,而异常和硬中断则是被动的。

       具体的切换操作

从触发方式上看,可以认为存在前述3种不同的类型,但是从最终实际完成由用户态 到内核态的切换操作上来说,涉及的关键步骤是完全一致的,没有任何区别,都相当于执行了一个中断响应的过程,因为系统调用实际上最终是中断机制实现的,而 异常和中断的处理机制基本上也是一致的,关于它们的具体区别这里不再赘述。关于中断处理机制的细节和步骤这里也不做过多分析,涉及到由用户态切换到内核态 的步骤主要包括:

[1] 从当前进程的描述符中提取其内核栈的ss0及esp0信息。

[2] 使用ss0和esp0指向的内核栈将当前进程的cs,eip,eflags,ss,esp信息保存起来,这个过程也完成了由用户栈到内核栈的切换过程,同时保存了被暂停执行的程序的下一条指令。

[3] 将先前由中断向量检索得到的中断处理程序的cs,eip信息装入相应的寄存器,开始

执行中断处理程序,这时就转到了内核态的程序执行了。

三. 用户态和内核态的区别

先看一个例子:

1)例子

void testfork(){  
if(0 = = fork()){  
printf(“create new process success!
”);  
}  
printf(“testfork ok
”);  
}  

这段代码很简单,从功能的角度来看,就是实际执行了一个fork(),生成一个 新的进程,从逻辑的角度看,就是判断了如果fork()返回的是0则打印相关语句,然后函数最后再打印一句表示执行完整个testfork()函数。代码 的执行逻辑和功能上看就是如此简单,一共四行代码,从上到下一句一句执行而已,完全看不出来哪里有体现出用户态和进程态的概念。

如果说前面两种是静态观察的角度看的话,我们还可以从动态的角度来看这段代码,即它被转换成CPU执行的指令后加载执行的过程,这时这段程序就是一个动态执行的指令序列。而究竟加载了哪些代码,如何加载就是和操作系统密切相关了。

2)特权级

熟悉Unix/Linux系统的人都知道,fork的工作实际上是以系统调用的 方式完成相应功能的,具体的工作是由sys_fork负责实施。其实无论是不是Unix或者Linux,对于任何操作系统来说,创建一个新的进程都是属于 核心功能,因为它要做很多底层细致地工作,消耗系统的物理资源,比如分配物理内存,从父进程拷贝相关信息,拷贝设置页目录页表等等,这些显然不能随便让哪 个程序就能去做,于是就自然引出特权级别的概念,显然,最关键性的权力必须由高特权级的程序来执行,这样才可以做到集中管理,减少有限资源的访问和使用冲 突。

特权级显然是非常有效的管理和控制程序执行的手段,因此在硬件上对特权级做了很 多支持,就Intel x86架构的CPU来说一共有0~3四个特权级,0级最高,3级最低,硬件上在执行每条指令时都会对指令所具有的特权级做相应的检查,相关的概念有 CPL、DPL和RPL,这里不再过多阐述。硬件已经提供了一套特权级使用的相关机制,软件自然就是好好利用的问题,这属于操作系统要做的事情,对于 Unix/Linux来说,只使用了0级特权级和3级特权级。也就是说在Unix/Linux系统中,一条工作在0级特权级的指令具有了CPU能提供的最 高权力,而一条工作在3级特权级的指令具有CPU提供的最低或者说最基本权力。

3)用户态和内核态

现在我们从特权级的调度来理解用户态和内核态就比较好理解了,当程序运行在3级 特权级上时,就可以称之为运行在用户态,因为这是最低特权级,是普通的用户进程运行的特权级,大部分用户直接面对的程序都是运行在用户态;反之,当程序运 行在0级特权级上时,就可以称之为运行在内核态。

虽然用户态下和内核态下工作的程序有很多差别,但最重要的差别就在于特权级的不 同,即权力的不同。运行在用户态下的程序不能直接访问操作系统内核数据结构和程序,比如上面例子中的testfork()就不能直接调用 sys_fork(),因为前者是工作在用户态,属于用户态程序,而sys_fork()是工作在内核态,属于内核态程序。

当我们在系统中执行一个程序时,大部分时间是运行在用户态下的,在其需要操作系 统帮助完成某些它没有权力和能力完成的工作时就会切换到内核态,比如testfork()最初运行在用户态进程下,当它调用fork()最终触发 sys_fork()的执行时,就切换到了内核态。

四、用户栈和内核栈

    内核在创建进程的时候,在创建task_struct的同时,会为进程创建相应的堆栈。每一个进程都有两个栈,一个用户栈,存在于用户空间;一个内核栈,存在于内核空间。当进程在用户空间运行时,CPU堆栈指针寄存器里面的内容都是用户栈地址,使用用户栈当进程在内核空间时,CPU堆栈指针寄存器里面的内容是内核栈空间地址,使用内核栈。
    
    当进程因为中断或者系统调用陷入到内核态时,进程所使用的堆栈也要从用户栈转到内核栈。进程陷入到内核态后,先把用户态堆栈的地址保存在内核栈之中,然后设置堆栈指针寄存器的内容为内核栈的地址,这样就完成了用户栈向内核栈的转换;当进程从内核态恢复到用户态之后时,在内核态之后的最后将保存在内核栈里面的用户栈的地址恢复到堆栈指针寄存器即可。这样就实现了用户栈和内核栈的互转。
 
    那么,知道从内核转到用户态时,用户栈的地址是在陷入内核的时候保存在内核栈里面的,但是在陷入内核的时候,如何知道内核栈的地址?关键在进程从用户态转到内核态的时候,进程的内核栈总是空的。这是因为当进程在用户态运行时,使用的用户栈,当进程陷入到内核态时,内核保存进程在内核态运行的相关信息,但是一旦进程返回到用户态后,内核栈中保存的信息无效,会全部恢复,因此每次进程从用户态陷入内核的时候得到的内核栈都是空的。所以在进程陷入内核的时候,直接把内核栈的栈顶地址给堆栈指针寄存器就可以了。

参考:

https://www.cnblogs.com/bakari/p/5520860.html

https://www.cnblogs.com/yuyang0920/p/7278446.html

https://www.cnblogs.com/think-in-java/p/5924183.html

原文地址:https://www.cnblogs.com/zzdbullet/p/9776957.html