小公式

每天一个小公式

点火公式(Wallis)

\[\begin{align*} &I_n=\int_0^{\frac{\pi}{2}} sin^n\theta d\theta=\int_0^{\frac{\pi}{2}} cos^n\theta d\theta= \left\{ \begin{aligned} \frac{n-1}{n}·\frac{n-3}{n-2}·\cdots·\frac{3}{4}·\frac{1}{2}·\frac{\pi}{2},n为偶数\\ \frac{n-1}{n}·\frac{n-3}{n-2}·\cdots·\frac{2}{3},n为大于1的奇数\\ \end{aligned} \right.\\ &prove.\\ &I_n=\int_0^{\frac{\pi}{2}} sin^n\theta d\theta\\ &=-\int_0^{\frac{\pi}{2}} sin^{n-1}\theta d(cos\theta)\\ &=[-cos\theta \cdot sin^{n-1}\theta]_0^{\frac{\pi}{2}}+\int_0^{\frac{\pi}{2}} cos\theta d(sin^{n-1}\theta)\\ &=0+(n-1)\int_0^{\frac{\pi}{2}} cos^2\theta (sin\theta)^{n-2} d\theta\\ &=(n-1)\int_0^{\frac{\pi}{2}} (1-sin^2\theta) (sin\theta)^{n-2} d\theta\\ &=(n-1)I_{n-2}-(n-1)I_n\\ &i.e. n\cdot I_n=(n-1)I_{n-2}\\ &i.e.\frac{I_n}{I_{n-2}}=\frac{n-1}{n}\\ &由I_0=\int_0^{\frac{\pi}{2}} d\theta=\frac{\pi}{2},I_1=\int_0^{\frac{\pi}{2}} sin\theta d\theta=1\\ &得证,I_n=\int_0^{\frac{\pi}{2}} sin^n\theta d\theta= \left\{ \begin{aligned} \frac{n-1}{n}·\frac{n-3}{n-2}·\cdots·\frac{3}{4}·\frac{1}{2}·\frac{\pi}{2},n为偶数\\ \frac{n-1}{n}·\frac{n-3}{n-2}·\cdots·\frac{2}{3},n为大于1的奇数\\ \end{aligned} \right.\\ &prove:若f(x)在[0,1]上连续,\int_0^{\frac{\pi}{2}} f(sin\theta) d\theta=\int_0^{\frac{\pi}{2}} f(cos\theta) d\theta\\ &令\theta=\frac{\pi}{2}-t,d\theta=-dt\\ &于是,\int_0^{\frac{\pi}{2}} f(sin\theta) d\theta=-\int^0_{\frac{\pi}{2}} f(sin(\frac{\pi}{2}-t)) dt\\ &=\int_0^{\frac{\pi}{2}} f(cost) dt=\int_0^{\frac{\pi}{2}} f(cosx) dx \end{align*} \]

原文地址:https://www.cnblogs.com/zx0710/p/13945824.html