莫比乌斯反演推演总结

鉴于本人水平有限就不证明了。

替换法则:$sum_{n = 1}^{m}sum_{d | n}^{} [frac{n}{d}] mu ([frac{n}{d}]) =  sum_{n = 1}^{m}sum_{d | n}^{} d mu (d)$

递推一:$sum_{i = 1}^{n}sum_{j = 1}^{n} lcm(a[i],a[j]) = sum_{i = 1}^{n}sum_{j = 1}^{n} a[i] * a[j] * frac{1}{gcd(a[i],a[j])}$

$= sum_{d = 1}^{max} sum_{i = 1}^{n}sum_{j = 1}^{n} (d | a[i]) * (d | a[j]) * a[i] * a[j] * frac{1}{d} * [gcd(a[i],a[j]) = d] $

$=  sum_{d = 1}^{max} sum_{i = 1}^{n}sum_{j = 1}^{n} (d | a[i]) * (d | a[j]) * a[i] * a[j] * frac{1}{d} * [gcd(frac{a[i]}{d},frac{a[j]}{d}) = 1]$

$= sum_{d = 1}^{max}* frac{1}{d} sum_{i = 1}^{n}sum_{j = 1}^{n} (d | a[i]) * (d | a[j]) * a[i] * a[j] sum_{t | frac{a[i]}{d},t | frac{a[j]}{d}}^{}mu (d)$

$= sum_{d = 1}^{max}* frac{1}{d} sum_{i = 1}^{n}sum_{j = 1}^{n} (d | a[i]) * (d | a[j]) * a[i] * a[j] sum_{t | d}^{}t * mu (t)$

$= sum_{d = 1}^{max} d sum_{i = 1}^{n}sum_{j = 1}^{n} (d | a[i]) * (d | a[j]) * frac{a[i]}{d} * frac{a[j]}{d} sum_{t | d}^{}t * mu (t)$

原文地址:https://www.cnblogs.com/zwjzwj/p/15503939.html