29-中国剩余定理CRT

https://blog.csdn.net/u010468553/article/details/38346195    

          中国剩余定理【数论】

中国剩余定理的具体描述是这样的:

给出你n个ai和mi,最后让求出x的最小值是多少。

中国剩余定理说明:假设整数m1m2, ... , mn两两互质,则对任意的整数:a1a2, ... , an,方程组(S)有解,并且通解可以用如下方式构造得到:

  1. M = m_1 	imes m_2 	imes cdots 	imes m_n = prod_{i=1}^n m_i是整数m1m2, ... , mn的乘积,并设M_i = M/m_i, ; ; forall i in {1, 2, cdots , n}是除了mi以外的n - 1个整数的乘积。
  2. t_i = M_i^{-1}M_im_i的数论倒数:t_i M_i equiv 1 pmod {m_i},  ; ; forall i in {1, 2, cdots , n}.
  3. 方程组(S)的通解形式为:x = a_1 t_1 M_1 + a_2 t_2 M_2 + cdots + a_n t_n M_n + k M= k M + sum_{i=1}^n a_i t_i M_i, quad k in mathbb{Z}. 在模M的意义下,方程组(S)只有一个解:x = sum_{i=1}^n a_i t_i M_i.
 
           分割线                                                                                                                   
 
下面我们来看一个具体的例子:
 

使用中国剩余定理来求解上面的“物不知数”问题,便可以理解《孙子歌诀》中的数字含义。这里的线性同余方程组是:

(S) : quad left{ egin{matrix} x equiv 2 pmod {3} \ x equiv 3 pmod {5} \ x equiv 2 pmod {7} end{matrix} 
ight.

三个模数m1=3, m2=5, m3=7的乘积是M=105,对应的M1=35, M2=21, M3=15. 而可以计算出相应的数论倒数:t1=2, t2=1, t3=1. 所以《孙子歌诀》中的70,21和15其实是这个“物不知数”问题的基础解:

70 = 2 	imes 35 equiv  left{  egin{matrix}  1 pmod {3} \ 0 pmod {5} \  0 pmod {7} end{matrix} , 
ight. 21 = 1 	imes 21  equiv left{ egin{matrix}  0 pmod {3} \ 1 pmod {5} \  0 pmod {7} end{matrix} , 
ight. 15 = 1 	imes 15 equiv left{ egin{matrix} 0 pmod {3} \  0 pmod {5} \  1 pmod {7} end{matrix} , 
ight.

而将原方程组中的余数相应地乘到这三个基础解上,再加起来,其和就是原方程组的解:

2	imes 70 + 3 	imes 21 + 2 	imes 15  equiv  left{  egin{matrix}  2 	imes 1 + 3 	imes 0 + 2 	imes 0 equiv 2 pmod {3} \  2 	imes 0 + 3 	imes 1 + 2 	imes 0 equiv 3 pmod {5} \  2 	imes 0 + 3 	imes 0 + 2 	imes 1 equiv 2 pmod {7} end{matrix} , 
ight.

这个和是233,实际上原方程组的通解公式为:

x = 233 + k 	imes 105, ; kin mathbb{Z}.

《孙子算经》中实际上给出了最小正整数解,也就是k=-2时的解:x=23.

附:数论倒数 wiki
 
具体代码参考如下:(应该很明了)
  1.  
    ///n个mi互质
  2.  
    const LL maxn = 20;
  3.  
    LL a[maxn], m[maxn], n;
  4.  
    LL CRT(LL a[], LL m[], LL n)
  5.  
    {
  6.  
    LL M = 1;
  7.  
    for (int i = 0; i < n; i++) M *= m[i];
  8.  
    LL ret = 0;
  9.  
    for (int i = 0; i < n; i++)
  10.  
    {
  11.  
    LL x, y;
  12.  
    LL tm = M / m[i];
  13.  
    ex_gcd(tm, m[i], x, y);
  14.  
    ret = (ret + tm * x * a[i]) % M;
  15.  
    }
  16.  
    return (ret + M) % M;
  17.  
    }

       分割线                                                                                                                       
 
下面也就是关于这个的扩展,前面我们已经说了,中国剩余数定理是适用于n个mi两两互质的情况的,如果不互质呢,下面就是一个转换:

模不两两互质的同余式组可化为模两两互质的同余式组,再用孙子定理直接求解。

84=22×3×7,160=25×5,63=32×7,由推广的孙子定理可得 egin{cases}x equiv 23 pmod{84} \x equiv 7 pmod{160} \x equiv 2 pmod{63} end{cases} 与 egin{cases}x equiv 7 pmod{2^5} \x equiv 2 pmod{3^2} \x equiv 7 pmod{5} \x equiv 23 pmod{7}end{cases} 同解。

附图:详细讲解,转自传送门

  1.  
    ///n个mi不互质
  2.  
    const LL maxn = 1000;
  3.  
    LL a[maxn], m[maxn], n;
  4.  
    LL CRT(LL a[], LL m[], LL n) {
  5.  
    if (n == 1) {
  6.  
    if (m[0] > a[0]) return a[0];
  7.  
    else return -1;
  8.  
    }
  9.  
    LL x, y, d;
  10.  
    for (int i = 1; i < n; i++) {
  11.  
    if (m[i] <= a[i]) return -1;
  12.  
    d = ex_gcd(m[0], m[i], x, y);
  13.  
    if ((a[i] - a[0]) % d != 0) return -1; //不能整除则无解
  14.  
    LL t = m[i] / d;
  15.  
    x = ((a[i] - a[0]) / d * x % t + t) % t; //第0个与第i个模线性方程的特解
  16.  
    a[0] = x * m[0] + a[0];
  17.  
    m[0] = m[0] * m[i] / d;
  18.  
    a[0] = (a[0] % m[0] + m[0]) % m[0];
  19.  
    }
  20.  
    return a[0];
  21.  
    }

                                                                                                          以上大部分内容来自wiki
下面做几道练手的题目:
poj2891,n个mi不互质的裸题
poj1006,三个互质的裸题
 
原文地址:https://www.cnblogs.com/zhumengdexiaobai/p/9495496.html