5-青蛙的约会(ex_gcd)

                                                             青蛙的约会
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions:122411   Accepted: 25980

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

Source

 
 简单介绍扩展欧几里得算法:

裴蜀定理:

d = gcd(a,b) =>  存在u,v使 得au + bv = d

构造出u,v:
  假设a>b且 a=bt+c,由于d|a, d|b, 故d| c
  因此d=gcd(b, c) **** 这就是辗转相除
  如果au+bv=d ,
  则有(bt+c)u+bv=d, 于是
  b(tu+v)+ cu=d
  令 u’ = tu+v, v’=u, 则是bu’+cv’=d. 因此我们由u,v 得到了u’, v’. 反过来,如果我们知道u’,v’, 我们也可得到u,v
  u=v’ , v=u’-tv’
  这就是求u,v的递推公式!
  不断辗转相除最后的结果是 d= gcd (d, 0), 有 u’=1,v’=0

    au+ bv=d

  如果有一个解u0,v0
  则u=u0+bt
  v=v0- at
  构成一个解空间,t为任意整数

详解:

现在引入一个很关键的数学性质:就是如果a,b如果是互质的,那么他们的线性组合可以得到任意的整数。

利用扩展欧几里得算法求解不定方程a * x + b * y = n的整数解的求解全过程,步骤如下:

1、先计算Gcd(a,b),若n不能被Gcd(a,b)整除,则方程无数解;否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a’ * x + b’ * y = n’,此时Gcd(a’,b’)=1;

2、利用扩展欧几里德算法求出方程a’ * x + b’ * y = 1的一组整数解x0, y0,则n’* x0, n’* y0是方程a’ * x + b’ * y = n’的一组整数解;

3、根据数论中的相关定理,可得方程a’ * x + b’ * y = n’的所有整数解为:

       x = n’ * x0  + b’ * t

    y = n’ * y0 – a’ * t    (t=0,1,2,……)

 注意:在方程的变为a’ * x + b’ * y = 1到得到解后还原a * x + b * y = n从而到的最终解的还原变形一定要注意。

  

 
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
//bool db[10000000];

long long gcd(long long a, long long b){ //最大公约数 
	return b == 0 ? a : gcd(b, a % b);
}

void ex_gcd(long long a, long long b, long long &u, long long &v){
	//刚开始套老师的ppt一直超时,居然是因为老师的是 long logn ex_gcd(),带返回值会超时的!!!长知识了QAQ 
	if(b == 0){
		u = 1, v = 0;
		return  ;
	}
	ex_gcd(b, a%b, v, u);
	v = v - a/b *u;
	return  ;
}

int main(){
	long long x, y, m, n, l;
	long long a, b, u, v, d;
	while(cin >> x >> y >> m >> n >> l){
		d = x - y;
		a = n - m;
		b = l;
		long long g = gcd(a, b);
		if(d % g != 0){
			cout << "Impossible" << endl;
		}
		else{
			a /= g;
			b /= g;
			d /= g;         //注意与下面还原等式保持一直
			ex_gcd(a, b, u, v);  //得到的u,v是au + bv = 1的解 
			u = u * d;      //注意还原等式改补的补上 
//one:			
//			while(u > 0){   //题目是要求最小整数解,先找到最大负的 
//				u -= b;
//			} 
//			while(u < 0){   //再变为最小正的
//				u += b;				
//			}
//two:
			u = (u % b + b) % b; //不管u初始是正负,都会转为最小的非负数
			if(!u)   //如果u == 0,则需要+b变为最小正整数 
				u += b;		
			cout << u << endl;
		}
	}
	return 0;
}

  

  

原文地址:https://www.cnblogs.com/zhumengdexiaobai/p/8395266.html