ZedGraph源码学习(三)

我们先看下一段代码,这行代码是说在轴上对应的值转化成它对应的像素值。

		public float Transform( double x )
		{
			// Must take into account Log, and Reverse Axes
			double denom = ( _maxLinTemp - _minLinTemp );
			double ratio;
			if ( denom > 1e-100 )
				ratio = ( Linearize( x ) - _minLinTemp ) / denom;
			else
				ratio = 0;

			if ( _isReverse == ( _ownerAxis is XAxis || _ownerAxis is X2Axis ) )
				return (float) ( _maxPix - ( _maxPix - _minPix ) * ratio );
			else
				return (float) ( _minPix + ( _maxPix - _minPix ) * ratio );
		}

这段代码很好理解,我们假设这是X轴,轴没有反转,X轴上的坐标最小值minLinTemp,对应像素是minpix,坐标最大值是maxLinTemp,对应像素是maxpix,现有一点在x轴的坐标是xlin,那么它对应的像素是xpix,它们满足这样一个关系,(xlin-minLinTemp)/(maxLinTemp-minLinTemp)=(xpix-minpix)/(maxpix-minpix),根据这个关系我们能得到对应的xpix的关系。如果是Y轴,因为我们坐标系上的Y轴和在设备上的坐标系是反着来的,那么它们的关系要改着这样了,(xlin-minLinTemp)/(maxLinTemp-minLinTemp)=(maxpix-xpix)/(maxpix-minpix).

然后我们查看一下Chart图上的元素是如何绘制的,我们这里看线条的绘制过程。线条的元素LineItem里会封装一个Line的对象,这个对象主要是负责具体画什么样的线,如直线,基数样条等,我们看一下普通的基数样条的绘制代码。

public void DrawCurve( Graphics g, GraphPane pane,
                                CurveItem curve, float scaleFactor )
		{
			Line source = this;
			if ( curve.IsSelected )
				source = Selection.Line;

			// switch to int to optimize drawing speed (per Dale-a-b)
			int	tmpX, tmpY,
					lastX = int.MaxValue,
					lastY = int.MaxValue;

			double curX, curY, lowVal;
			PointPair curPt, lastPt = new PointPair();

			bool lastBad = true;
			IPointList points = curve.Points;
			ValueHandler valueHandler = new ValueHandler( pane, false );
			Axis yAxis = curve.GetYAxis( pane );
			Axis xAxis = curve.GetXAxis( pane );

			bool xIsLog = xAxis._scale.IsLog;
			bool yIsLog = yAxis._scale.IsLog;

			// switch to int to optimize drawing speed (per Dale-a-b)
			int minX = (int)pane.Chart.Rect.Left;
			int maxX = (int)pane.Chart.Rect.Right;
			int minY = (int)pane.Chart.Rect.Top;
			int maxY = (int)pane.Chart.Rect.Bottom;

			using ( Pen pen = source.GetPen( pane, scaleFactor ) )
			{
				if ( points != null && !_color.IsEmpty && this.IsVisible )
				{
					//bool lastOut = false;
					bool isOut;

					bool isOptDraw = _isOptimizedDraw && points.Count > 1000;

					// (Dale-a-b) we'll set an element to true when it has been drawn	
					bool[,] isPixelDrawn = null;
					
					if ( isOptDraw )
						isPixelDrawn = new bool[maxX + 1, maxY + 1]; 
					
					// Loop over each point in the curve
					for ( int i = 0; i < points.Count; i++ )
					{
						curPt = points[i];
						if ( pane.LineType == LineType.Stack )
						{
							if ( !valueHandler.GetValues( curve, i, out curX, out lowVal, out curY ) )
							{
								curX = PointPair.Missing;
								curY = PointPair.Missing;
							}
						}
						else
						{
							curX = curPt.X;
							curY = curPt.Y;
						}

						// Any value set to double max is invalid and should be skipped
						// This is used for calculated values that are out of range, divide
						//   by zero, etc.
						// Also, any value <= zero on a log scale is invalid
						if ( curX == PointPair.Missing ||
								curY == PointPair.Missing ||
								System.Double.IsNaN( curX ) ||
								System.Double.IsNaN( curY ) ||
								System.Double.IsInfinity( curX ) ||
								System.Double.IsInfinity( curY ) ||
								( xIsLog && curX <= 0.0 ) ||
								( yIsLog && curY <= 0.0 ) )
						{
							// If the point is invalid, then make a linebreak only if IsIgnoreMissing is false
							// LastX and LastY are always the last valid point, so this works out
							lastBad = lastBad || !pane.IsIgnoreMissing;
							isOut = true;
						}
						else
						{
							// Transform the current point from user scale units to
							// screen coordinates
							tmpX = (int) xAxis.Scale.Transform( curve.IsOverrideOrdinal, i, curX );
							tmpY = (int) yAxis.Scale.Transform( curve.IsOverrideOrdinal, i, curY );

							// Maintain an array of "used" pixel locations to avoid duplicate drawing operations
							// contributed by Dale-a-b
							if ( isOptDraw && tmpX >= minX && tmpX <= maxX &&
										tmpY >= minY && tmpY <= maxY ) // guard against the zoom-in case
							{
								if ( isPixelDrawn[tmpX, tmpY] )
									continue;
								isPixelDrawn[tmpX, tmpY] = true;
							}

							isOut = ( tmpX < minX && lastX < minX ) || ( tmpX > maxX && lastX > maxX ) ||
								( tmpY < minY && lastY < minY ) || ( tmpY > maxY && lastY > maxY );

							if ( !lastBad )
							{
								try
								{
									// GDI+ plots the data wrong and/or throws an exception for
									// outrageous coordinates, so we do a sanity check here
									if ( lastX > 5000000 || lastX < -5000000 ||
											lastY > 5000000 || lastY < -5000000 ||
											tmpX > 5000000 || tmpX < -5000000 ||
											tmpY > 5000000 || tmpY < -5000000 )
										InterpolatePoint( g, pane, curve, lastPt, scaleFactor, pen,
														lastX, lastY, tmpX, tmpY );
									else if ( !isOut )
									{
										if ( !curve.IsSelected && this._gradientFill.IsGradientValueType )
										{
											using ( Pen tPen = GetPen( pane, scaleFactor, lastPt ) )
											{
												if ( this.StepType == StepType.NonStep )
												{
													g.DrawLine( tPen, lastX, lastY, tmpX, tmpY );
												}
												else if ( this.StepType == StepType.ForwardStep )
												{
													g.DrawLine( tPen, lastX, lastY, tmpX, lastY );
													g.DrawLine( tPen, tmpX, lastY, tmpX, tmpY );
												}
												else if ( this.StepType == StepType.RearwardStep )
												{
													g.DrawLine( tPen, lastX, lastY, lastX, tmpY );
													g.DrawLine( tPen, lastX, tmpY, tmpX, tmpY );
												}
												else if ( this.StepType == StepType.ForwardSegment )
												{
													g.DrawLine( tPen, lastX, lastY, tmpX, lastY );
												}
												else
												{
													g.DrawLine( tPen, lastX, tmpY, tmpX, tmpY );
												}
											}
										}
										else
										{
											if ( this.StepType == StepType.NonStep )
											{
												g.DrawLine( pen, lastX, lastY, tmpX, tmpY );
											}
											else if ( this.StepType == StepType.ForwardStep )
											{
												g.DrawLine( pen, lastX, lastY, tmpX, lastY );
												g.DrawLine( pen, tmpX, lastY, tmpX, tmpY );
											}
											else if ( this.StepType == StepType.RearwardStep )
											{
												g.DrawLine( pen, lastX, lastY, lastX, tmpY );
												g.DrawLine( pen, lastX, tmpY, tmpX, tmpY );
											}
											else if ( this.StepType == StepType.ForwardSegment )
											{
												g.DrawLine( pen, lastX, lastY, tmpX, lastY );
											}
											else if ( this.StepType == StepType.RearwardSegment )
											{
												g.DrawLine( pen, lastX, tmpY, tmpX, tmpY );
											}
										}
									}

								}
								catch
								{
									InterpolatePoint( g, pane, curve, lastPt, scaleFactor, pen,
												lastX, lastY, tmpX, tmpY );
								}

							}

							lastPt = curPt;
							lastX = tmpX;
							lastY = tmpY;
							lastBad = false;
							//lastOut = isOut;
						}
					}
				}
			}
		}

代码有些多,但是过程还是很清晰的,前面一部分代码都是来获取相关数据,然后遍历对应CurveItem里的IPointList数据,把每个Point数据(是我们看到的数据)对应当前CurveItem里的X轴与Y轴上的像素值(给机器来看的),这里用到的转换就是上面所说的那部分代码,根据我们选择StepType不同来绘制每二点决定的线。这样就绘制出了我们要的线条,别的元素具体上不同,但是都是这种逻辑。其实如果要多了解这一方面的逻辑,可以看下有关坐标系统和转换的知识。

PS:读源码有个地方要注意,不要只是跟着代码往下来,看一会不是分支过多就是跑题了,看的时候你要自己跟着想,如果是我来实现这一功能,应该怎么来实现,然后和看的代码比对。

原文地址:https://www.cnblogs.com/zhouxin/p/2477548.html