用R语言分析与预測员工离职

版权声明:本文为博主原创文章。未经博主同意不得转载。 https://blog.csdn.net/kMD8d5R/article/details/83542978
640?wx_fmt=gif640?</p><p>wx_fmt=png

作者简单介绍

糖甜甜甜,R语言中文社区专栏作者

公众号:经管人学数据分析



在实验室搬砖之后,继续我们的kaggle数据分析之旅,这次数据也是答主在kaggle上选择的比較火的一份关于人力资源的数据集,关注点在于员工离职的分析和预測,依旧还是从数据读取,数据预处理,EDA和机器学习建模这几个部分開始进行,最后使用集成学习中比較火的random forest算法来预測离职情况。

数据读取

setwd("E:/kaggle/human resource") library(data.table) library(plotly) library(corrplot) library(randomForest) library(pROC) library(tidyverse) library(caret) hr<-as.tibble(fread("HR_comma_sep.csv")) glimpse(hr) sapply(hr,function(x){sum(is.na(x))}) ———————————————————————————————————————————————————————————————————————————————————— Observations: 14,999 Variables: 10 $ satisfaction_level    <dbl> 0.38, 0.80, 0.11, 0.72, 0.37, 0.41, 0.10, 0.92, 0.89, 0.42, 0.45, 0.11, 0.84, 0.41, 0.36, 0.38, 0.45, 0.78, 0.45, 0.76, 0.11, 0.3... $ last_evaluation       <dbl> 0.53, 0.86, 0.88, 0.87, 0.52, 0.50, 0.77, 0.85, 1.00, 0.53, 0.54, 0.81, 0.92, 0.55, 0.56, 0.54, 0.47, 0.99, 0.51, 0.89, 0.83, 0.5... $ number_project        <int> 2, 5, 7, 5, 2, 2, 6, 5, 5, 2, 2, 6, 4, 2, 2, 2, 2, 4, 2, 5, 6, 2, 6, 2, 2, 5, 4, 2, 2, 2, 6, 2, 2, 2, 4, 6, 2, 2, 6, 2, 5, 2, 2, ... $ average_montly_hours  <int> 157, 262, 272, 223, 159, 153, 247, 259, 224, 142, 135, 305, 234, 148, 137, 143, 160, 255, 160, 262, 282, 147, 304, 139, 158, 242,... $ time_spend_company    <int> 3, 6, 4, 5, 3, 3, 4, 5, 5, 3, 3, 4, 5, 3, 3, 3, 3, 6, 3, 5, 4, 3, 4, 3, 3, 5, 5, 3, 3, 3, 4, 3, 3, 3, 6, 4, 3, 3, 4, 3, 5, 3, 3, ... $ Work_accident         <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... $ left                  <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... $ promotion_last_5years <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... $ sales                 <chr> "sales", "sales", "sales", "sales", "sales", "sales", "sales", "sales", "sales", "sales", "sales", "sales", "sales", "sales", "sa... $ salary                <chr> "low", "medium", "medium", "low", "low", "low", "low", "low", "low", "low", "low", "low", "low", "low", "low", "low", "low", "low... satisfaction_level       last_evaluation        number_project  average_montly_hours    time_spend_company         Work_accident                  left                    0                     0                     0                     0                     0                     0                     0 promotion_last_5years                 sales                salary                    0                     0                     0

数据集情况例如以下。一共10维数据,14999个观測值。变量的代表名称各自是
satisfaction_level--惬意度,last_evaluation--最后一次评估,number_project--參与项目数量。average_montly_hours--每月平均工作时间。time_spend_company--公司停留时间。Work_accident--工作事故次数,left--是否离职。promotion_last_5years--过去五年升值状况,sales--工种,salary--工资。

并且简单的观測了一下。没有发现缺失值,那么我就能够直接进入数据分析阶段了。


数据预处理

依据每个特征的数值情况。我们能够将不少特征因子化,方便后期做不同类别的差异分析。

hr$sales<-as.factor(hr$sales) hr$salary<-as.factor(hr$salary) hr$left<-as.factor(hr$left) hr$Work_accident<-as.factor(hr$Work_accident) hr$left<-recode(hr$left,'1'="yes",'0'="no") hr$promotion_last_5years<-as.factor(hr$promotion_last_5years)

看的出大部分数据都是数值型的。我们使用相关性来衡量不同变量之间的相关性高低:

cor.hr<-hr %>% select(-sales,-salary) cor.hr$Work_accident<-as.numeric(as.character(cor.hr$Work_accident)) cor.hr$promotion_last_5years<-as.numeric(as.character(cor.hr$promotion_last_5years)) cor.hr$left<-as.numeric(as.character(cor.hr$left)) corrplot(corr = cor(cor.hr),type = "lower",method = "square",title="变量相关性",order="AOE")

640?wx_fmt=jpeg

直观的来看。是否离职和惬意度高低就有非常高的关联性啊。


EDA

ggplot(group_by(hr,sales),aes(x=sales,fill=sales))+geom_bar(width = 1)+coord_polar(theta = "x")+ggtitle("不同职业的人数") ggplot(hr,aes(x=sales,y=satisfaction_level,fill=sales))+geom_boxplot()+ggtitle("不同职业的惬意度")+stat_summary(fun.y = mean,size=3,color='white',geom = "point")+  theme(legend.position = "none") ggplot(hr,aes(x=sales,y=satisfaction_level,fill=left))+geom_boxplot()+ggtitle("不同职业的惬意度") ggplot(hr,aes(x=sales,y=average_montly_hours,fill=left))+geom_boxplot()+ggtitle("不同职业的工作时长") ggplot(hr,aes(x=sales,y=number_project,fill=left))+geom_boxplot()+ggtitle("不同职业的项目情况")

640?wx_fmt=jpeg

首先观察不同岗位的工作人数。搞销售的人数真的是不少。难道有不少我大生科的同学吗??(哈哈哈哈哈哈哈。开个玩笑而已,只是说实话做生物真的非常累啊)。

销售,后期支持,和技术岗人数占领人数排行榜前三。

640?wx_fmt=jpeg

不同的职业惬意度的分布大体相当。只是accounting的小伙伴们似乎打分都不高哦,其它的几个工种均值和中位数都没有明显区别,接下来我们看看不同职业是否离职的情况和打分的高低情况:

640?wx_fmt=jpeg

和想象中结果差点儿没有区别,离职和不离职的打分区分度非常高,和职业差点儿没有关系。

640?wx_fmt=jpeg

那么不同职业的平均工作时长呢,看图而言,没有离职的人群工作时间都非常稳定。可是离职人群的工作时间呈现两极分化的趋势。看来太忙和太闲都不是非常好。这对hr的考验还是非常大的。


后面我们来一次关注一下不同特征和离职的关系问题:

ggplot(hr,aes(x=satisfaction_level,color=left))+geom_line(stat = "density")+ggtitle("惬意度和离职的关系") ggplot(hr,aes(x=salary,fill=left))+geom_histogram(stat="count")+ggtitle("工资和离职的关系") ggplot(hr,aes(x=promotion_last_5years,fill=left))+geom_histogram(stat="count")+ggtitle("近5年升值和离职的关系") ggplot(hr,aes(x=last_evaluation,color=left))+geom_point(stat = "count")+ggtitle("最后一次评价和离职的关系") hr %>% group_by(sales) %>% ggplot(aes(x=sales,fill=Work_accident))+geom_bar()+coord_flip()+  theme(axis.text.x = element_blank(),axis.title.x = element_blank(),axis.title.y = element_blank())+scale_fill_discrete(labels=c("no accident","at least once"))

640?</p><p>wx_fmt=jpeg

没有离职的人群打分已知非常稳定,而离职人群的打分就有点难以估摸了

640?wx_fmt=jpeg

还是那句话。“有钱好办事啊”

640?wx_fmt=jpeg

你不给宝宝升职,宝宝就生气离职

640?</p><p>wx_fmt=jpeg

和前面的面积图几乎相同,hr也要警惕那些最后一次打分非常高的,尽管大部分是不准备离职的。可是有些为了给老东家面子还是会来点“善意的谎言”的。


640?wx_fmt=jpeg


不出错是不可能的,出错人数多少基本和总人数成正比,所以这个对于离职来说不是问题。


模型构建和评估

index<-sample(2,nrow(hr),replace = T,prob = c(0.7,0.3)) train<-hr[index==1,];test<-hr[index==2,] model<-randomForest(left~.,data = train) predict.hr<-predict(model,test) confusionMatrix(test$left,predict.hr) prob.hr<-predict(model,test,type="prob") roc.hr<-roc(test$left,prob.hr[,2],levels=levels(test$left)) plot(roc.hr,type="S",col="red",main = paste("AUC=",roc.hr$auc,sep = ""))

依据前面的特征分析,本次答主并没有认为有非常好的特征来提取。就直接扔进算法里面计算去了,计算出来的混淆矩阵的情况效果还是杠杠的:

Confusion Matrix and Statistics          Reference Prediction   no  yes       no  3429    5       yes   28 1010                                                         Accuracy : 0.9926                           95% CI : (0.9897, 0.9949)    No Information Rate : 0.773              P-Value [Acc > NIR] : < 2.2e-16                                                                  Kappa : 0.9791           Mcnemar's Test P-Value : 0.0001283                                                            Sensitivity : 0.9919                      Specificity : 0.9951                   Pos Pred Value : 0.9985                   Neg Pred Value : 0.9730                       Prevalence : 0.7730                   Detection Rate : 0.7668             Detection Prevalence : 0.7679                Balanced Accuracy : 0.9935                                                           'Positive' Class : no                                                        

acc=0.9926,recall=0.9951,precision=0.9730,基本都是逆天的数据了,看来kaggle的数据集已经清洗的非常棒了,rf算法也是一如既往地给力。最后贴出ROC曲线的图

640?wx_fmt=jpeg


写在最后

本次分析事实上并没有非常多的技巧可言,答主的ggplot2水平也遇到了瓶颈期,后期须要不断加强,并且仅仅会调包不懂算法后面的原理更是不能够的,所以近期在慢慢把概率论。线性代数,还是统计学捡起来,当然R语言的数据分析实践还是不会停下来的,答主英语还不错,能够和实验室的老外教授“忽悠”几句。也算是有了不少的进步。

道阻且长,大家共勉~~~



往期回想

词云一分钟了解周董的歌词

R语言实现统计分析——非參数如果检验

《我不是药神》30亿票房后分析徐峥的选角眼光


640?wx_fmt=jpeg

公众号后台回复keyword就可以学习

回复 爬虫            爬虫三大案例实战  
回复 
Python       1小时破冰入门

回复 数据挖掘     R语言入门及数据挖掘
回复 
人工智能     三个月入门人工智能
回复 数据分析师  数据分析师成长之路 
回复 机器学习      机器学习的商业应用
回复 数据科学      数据科学实战
回复 经常使用算法      经常使用数据挖掘算法

原文地址:https://www.cnblogs.com/zhchoutai/p/9894131.html