MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series

此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。

PDF格式教材下载 Sequences and Series

本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution

Summary

  • If $$sum_{n=1}^infty |a_n|$$ converges (i.e. absolutely convergent), then $$sum_{n=1}^infty a_n$$ converges (i.e. conditionally convergent).
  • Suppose that $(a_n)$ is a decreasing sequence of positive numbers and $$lim_{n oinfty}a_n=0$$ Then the alternating series $$sum_{n=1}^infty (-1)^{n+1} a_n$$ converges.
  • For an alternating series $$s_n=sum_{n=1}^{infty}(-1)^ncdot a_n$$ the test steps:
    • If $$lim_{n oinfty}a_n eq0$$ then it diverges;
    • If $$lim_{n oinfty}a_n=0$$ and $a_n$ converges, then it absolutely converges;
    • If $$lim_{n oinfty}a_n=0$$ and $a_n$ diverges, then it conditionally converges.

Exercises 4.1

Determine whether each series converges absolutely, converges conditionally, or diverges.

1. $$sum_{n=1}^infty (-1)^{n-1}{1over 2n^2+3n+5}$$ Solution: $$sum_{n=1}^{infty}|a_n|=sum_{n=1}^{infty}{1over 2n^2+3n+5} < sum_{n=1}^{infty}{1over 2n^2} o ext{converge}$$ Thus it converges absolutely.

2. $$sum_{n=1}^infty (-1)^{n-1}{3n^2+4over 2n^2+3n+5}$$ Solution: $$lim_{n oinfty}|a_n|=lim_{n oinfty}{3n^2+4 over 2n^2+3n+5}={3over2} eq0$$ Thus it diverges.

3. $$sum_{n=1}^infty (-1)^{n-1}{ln nover n}$$ Solution: $$lim_{n oinfty}{ln nover n}=0$$ and $${ln nover n} > {1over n} o ext{diverge}$$ Thus it converges conditionally.

4. $$sum_{n=1}^infty (-1)^{n-1} {ln nover n^3}$$ Solution: $$lim_{n oinfty}{ln nover n^3}=0$$ and $${ln nover n^3} < {nover n^3}={1over n^2} o ext{converge}$$ Thus it converges absolutely.

5. $$sum_{n=2}^infty (-1)^n{1over ln n}$$ Solution: $$lim_{n oinfty}{1overln n}=0$$ and $${1overln n} > {1over n} o ext{diverge}$$ Thus it converges conditionally.

6. $$sum_{n=0}^infty (-1)^{n} {3^nover 2^n+5^n}$$ Solution: $$lim_{n oinfty}{3^nover 2^n+5^n}=0$$ and $$lim_{n oinfty}a_{n+1}/a_n=lim_{n oinfty}{3^{n+1}over 2^{n+1}+5^{n+1}}cdot{2^n+5^nover 3^n}$$ $$=lim_{n oinfty}{3cdot(2^n+5^n)over 2^{n+1}+5^{n+1}}={3over5} < 1$$ Thus it converges absolutely.

7. $$sum_{n=0}^infty (-1)^{n} {3^nover 2^n+3^n}$$ Solution: $$lim_{n oinfty}{3^nover 2^n+3^n}=1 eq0$$ Thus it diverges.

8. $$sum_{n=1}^infty (-1)^{n-1} {arctan nover n}$$ Solution: $$lim_{n oinfty}{arctan nover n}=lim_{n oinfty}{1over 1+n^2}=0$$ and $${arctan nover n} > {1over n} o ext{diverge}$$ Thus it converges conditionally.

Exercises 4.2

Determine whether the following series converge or diverge.

1. $$sum_{n=1}^infty {(-1)^{n+1}over 2n+5}$$ Solution: $$lim_{n oinfty}{1over 2n+5}=0$$ Thus it converges.

2. $$sum_{n=4}^infty {(-1)^{n+1}over sqrt{n-3}}$$ Solution: $$lim_{n oinfty}{1over sqrt{n-3}}=0$$ Thus it converges.

3. $$sum_{n=1}^infty (-1)^{n+1}{nover 3n-2}$$ Solution: $$lim_{n oinfty}{nover 3n-2}={1over3} eq0$$ Thus it diverges.

4. $$sum_{n=1}^infty (-1)^{n+1}{ln nover n}$$ Solution: $$lim_{n oinfty}{ln nover n}=0$$ Thus it converges.

5. Approximate $$sum_{n=1}^infty (-1)^{n+1}{1over n^3}$$ to two decimal places.Solution: $$int_{N}^{infty}{1over x^3}dx= -{1over2}cdot{1over x^2}Big|_{N}^{infty}= {1over2}cdot{1over N^2} < {1over100}Rightarrow N geq 8$$ Adding up the first 8 terms and the result is $0.9007447doteq0.90$.

6. Approximate $$sum_{n=1}^infty (-1)^{n+1}{1over n^4}$$ to two decimal places.Solution: $$int_{N}^{infty}{1over x ^4}dx=-{1over3}cdot{1over x^3}Big|_{N}^{infty}={1over3}cdot{1over N^3} < {1over100}Rightarrow Ngeq4$$ Adding up the first 4 term and the result is $0.9459394doteq0.95$.

Additional Exercises

1. Suppose $$sum_{n=1}^{infty}|a_n|$$ converges, what about $$sum_{n=1}^{infty}a_n$$ Solution: $$sum_{n=1}^{infty}|a_n| ext{converges}$$ $$Rightarrowsum_{n=1}^{infty}2cdot|a_n| ext{converges}$$ We have $$0leq a_n+|a_n|leq2cdot|a_n|$$ By comparison test, $$sum_{n=1}^{infty}(a_n+|a_n|)$$ converges. And $$sum_{n=1}^{infty}(a_n+|a_n|)-sum_{n=1}^{infty}|a_n|=sum_{n=1}^{infty}a_n$$ converges.

This exercise shows that "Absolutely converge implies converge".

2. $$sum_{j=5}^{infty}{2j^2+j+2 over 3j^5+j^4+5j^3+6}$$ converge or diverge?

Solution: $${2j^2+j+2 over 3j^5+j^4+5j^3+6} < {3i^2over3j^5}={1over j^3} o ext{converge}$$ By $p$-series test and comparison test, it converges.

3. $$sum_{n=2}^{infty}{6cdot(-1)^n over 7n^{0.52}}$$ converge or diverge?

Solution: $$lim_{n oinfty}{6over 7n^{0.52}}=0$$ and $${6over 7n^{0.52}} > {1over 7n^{0.52}} o ext{diverge}$$ Thus it converges conditionally.

4. $$sum_{n=7}^{infty}{4cdot(-1)^{n+1}over n^2+3n+5}$$ converge or diverge?

Solution: $$lim_{n oinfty}{4over n^2+3n+5}=0$$ and $${4over n^2+3n+5} < {4over n^2} o ext{converge}$$ Thus it converges absolutely.


作者:赵胤
出处:http://www.cnblogs.com/zhaoyin/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

原文地址:https://www.cnblogs.com/zhaoyin/p/4141907.html