Java虚拟机对象存活标记及垃圾收集算法解析

一、对象存活标记

  1. 引用计数算法

  给对象中添加一个引用计数器,每当有一个地方引用它时,计数器就加1;当引用失效时,计数器就减1;任何时刻计数器都为0的对象就是不可能再被使用的。

  引用计数算法(Reference Counting)的实现简单,判定效率也很高,在大部分情况下它都是一个不错的算法,也有一些比较著名的应用案例,例如微软的COM(Component Object Model)技术、使用ActionScript 3的FlashPlayer、Python语言以及在游戏脚本领域中被广泛应用的Squirrel中都使用了引用计数算法进行内存管理。但是,在Java语言中没有选用引用计数算法来管理内存,其中最主要的原因就是它很难解决对象之间的相互循环引用的问题。

  2. 根搜索算法

  在主流的商用程序语言中(Java和C#,甚至包括Lisp)都是使用根搜索算法(GCRoots Tracing)判定对象是否存活的。这个算法的基本思路是通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。

  在Java语言里,可作为GC Roots的对象包括下面几种:

  • 虚拟机栈(栈帧中的本地变量表)中的引用的对象。
  • 方法区中的类静态属性引用的对象
  • 方法区中的常量引用的对象
  • 本地方法栈中JNI(即一般说的Native方法)的引用的对象

  3. 对象标记过程

  在根搜索算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行根搜索后发现没能与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。

  如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会被放置在一个名为F-Queue的队列之中,并在稍后由一条虚拟机自动建立的、低优先级的Fianlizer线程去挪。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束。这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能导致F-Queue队列中的其他对象永久处于等待状态,甚至导致整个内存回收系统崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或对象的成员变量,那在第二次标记时它将被移除出“即将回收”的集合;如果对象这时候还没有逃脱,那它就真的离死不远了。

二、垃圾收集算法解析

1. 标记-清除算法

  “标记-清除”(Mark-Sweep)算法是最基础的收集算法,分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象,它的标记过程在前面对象标记判定时已经基本介绍过了。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。它的主要缺点有两个:一个是效率问题,标记和清除过程的效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。标记-清除算法的执行过程如下图。

  2. 复制算法

  为了解决效率问题,一种称为“复制”(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半。复制算法的执行过程如下图所示。

  现在的商业虚拟机都采用这种收集算法来回收新生代,IBM的专门研究表明,新生代中的对象98%是朝生夕死的,所以并不需要1:1的比例来划分空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中的一块Survivor。当回收时,将Eden和Survivor中还存活的对象一次性地拷贝到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例为8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+ 10%),只有10%的内存是会被“浪费”的。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

  3. 标记-整理算法

  复制收集算法在对象存活率较高时就要执行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

  根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后客服或如清理掉端边界以外的内存,“标记-整理”算法示决图如下:、

  4. 分代收集算法

  当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象的存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用:“标记-清理”或“标记-整理”算法来进行回收。

原文地址:https://www.cnblogs.com/zhaoshizi/p/10204016.html