2017-2018-2偏微分方程复习题解析3

Problem: Suppose that the function $f:bR^d obR$ is radial, that is, for any $x,yinbR^d$ with $|x|=|y|$, we have $f(x)=f(y)$. Show that the Fourier transform $calF(xi)$ is also radial.

Proof: For any $xi,etainbR^d$ with $|xi|=|eta|$, there exists an orthogonal matrix $A$ such that $eta=Axi a eta^T=xi^T A^T$. Thus, $$eexea calF f(eta) &=int_{bR^d} f(x) e^{-i eta^Tx} d x\ &=int_{bR^d} f(x) e^{-i xi^T A^T x} d x\ &=int_{bR^d} f(Ay) e^{-i xi^T y} d y\ & qx{A^TA=E a A^T=A^{-1}, y=A^T x=A^{-1}x a x=Ay}\ &=int_{bR^d} f(y) e^{-i xi^Ty} d yqwz{$f$ is radial}\ &=calF f(xi). eeaeeex$$

原文地址:https://www.cnblogs.com/zhangzujin/p/9012167.html