武汉大学2014年基础数学复试试题参考解答

来源 [尊重原有作者劳动成果]

 

2014年武汉大学基础数学复试试题解答

时间:2014年3月22日8:30—10:30

专业:基础数学

 

一、(10分)已知函数$f(x)$在$(-1,1)$上连续,在除$x=0$上存在导函数

(1)若$underset{x o 0}{mathop{lim }}\,f(x)$存在,证明存在;

(2)若$underset{x o 0}{mathop{lim }}\,f(x)$不存在,则$f(0)$一定不存在吗?若不存在,说明理由;若存在,请给出反例并证明。

证明:

(1)由于$f(0)=underset{x o 0}{mathop{lim }}\,frac{f(x)-f(0)}{x-0}=underset{x o 0}{mathop{lim }}\,frac{f(x)-f(0)}{x}$

而$f(x)$在$(-1,0)cup (0,1)$上可导

由微分中值定理可知:

存在$xi $在$0$和$x$之间,使得$f(x)-f(0)=f(xi )x$

于是[f(0)=underset{x o 0}{mathop{lim }}\,f(xi )]存在

于是$f(0)$存在

(2)不一定

例如

$f(x)=left{egin{array}{ll} {x^2}sin frac{1}{x}, hbox{$x e 0$;} \ 0, hbox{$x = 0$.} end{array} ight.$

显然$f(x)$在$(-1,1)$上连续,且$x e 0$时,$f(x)=2xsin frac{1}{x}-cos frac{1}{x}$

则$underset{x o 0}{mathop{lim }}\,f(x)$不存在

但$f(x)=underset{x o 0}{mathop{lim }}\,frac{f(x)-f(0)}{x-0}=underset{x o 0}{mathop{lim }}\,xsin frac{1}{x}=0$存在

于是不一定不存在

二、(10分)证明:函数$f(x)$在$(a,b)$上一致连续的充要条件是:对任意的${{{x}_{n}}}subset (a,b)$,只要${{{x}_{n}}}$收敛,则$f({{x}_{n}})$收敛。

证明:

必要性:若函数$f(x)$在$(a,b)$上一致连续

则对任意的$varepsilon 0$,存在$delta (varepsilon )0$,对任意的$x,xsubset (a,b)$,只要$left| x-x ight|delta $,则

$left| f(x)-f(x) ight|varepsilon $

于是当${{{x}_{n}}}$收敛时,则对任意的$varepsilon 0$,存在$delta (varepsilon )0$,对任意的$x_{n}^{},x_{n}^{}subset (a,b)$,有

$left| x_{n}^{}-x_{n}^{} ight|delta $

于是$left| f(x_{n}^{})-f(x_{n}^{}) ight|varepsilon $

由$Cauchy$收敛准则知,$f({{x}_{n}})$收敛

充分性:对任意的${{{x}_{n}}}subset (a,b)$,只要${{{x}_{n}}}$一致收敛,则$f({{x}_{n}})$收敛

即则对任意的$varepsilon 0$,存在$delta (varepsilon )0$,对任意的$x_{n}^{},x_{n}^{}subset (a,b)$,只要$left| x_{n}^{}-x_{n}^{} ight|delta $,于是

$left| f(x_{n}^{})-f(x_{n}^{}) ight|varepsilon $

下证$f(x)$在$(a,b)$上一致收敛

反证:若$f(x)$在$(a,b)$上不一致收敛

则存在${{varepsilon }_{0}}0$,对任意的$delta 0$,存在$left| x-x ight|delta $时,但有$left| f(x)-f(x) ight|ge {{varepsilon }_{0}}$

取${{delta }_{1}}=1$,存在$x_{1}^{},x_{1}^{}in (a,b),left| x_{1}^{}-x_{1}^{} ight|1$,但$left| f(x_{1}^{})-f(x_{1}^{}) ight|ge {{varepsilon }_{0}}$

取${{delta }_{2}}=frac{1}{2}$,存在$x_{2}^{},x_{2}^{}in (a,b),left| x_{2}^{}-x_{2}^{} ight|frac{1}{2}$,但$left| f(x_{2}^{})-f(x_{2}^{}) ight|ge {{varepsilon }_{0}}$

$cdots cdots $

取${{delta }_{n}}=frac{1}{n}$,存在$x_{n}^{},x_{n}^{}in (a,b),left| x_{n}^{}-x_{n}^{} ight|frac{1}{n}$,但$left| f(x_{n}^{})-f(x_{n}^{}) ight|ge {{varepsilon }_{0}}$

于是存在${{{x}_{n}}}$收敛,但${f({{x}_{n}})}$发散,矛盾

于是$f(x)$在$(a,b)$上一致收敛

三、(10分)设$X$是度量空间,$E$为$X$中的紧子集,$varphi $是$E$上到自身的映射,

$d(varphi (x),varphi (y))d(x,y)(x,yin E,x e y)$ ,求证:$varphi $在$E$中存在唯一不动点

证明:定义$E$上的函数$f(x)=d(varphi x,x)$

由于$left| f(x)-f(y) ight|=left| d(varphi x,x)-d(varphi y,y) ight|le d(varphi x,varphi y)+d(x,y)2d(x,y)$

于是$f$是$E$上的连续映射

由于$E$是度量空间$X$的紧子集

则必有${{x}_{0}}in E$,使得$f({{x}_{0}})=underset{xin E}{mathop{min }}\,f(x)$

先证$f({{x}_{0}})=0$

反证:若$f({{x}_{0}}) e 0Rightarrow varphi {{x}_{0}} e {{x}_{0}}$

记${{x}_{1}}=varphi {{x}_{0}}$,则$varphi {{x}_{1}}={{varphi }^{2}}{{x}_{0}}$

于是

$f({{x}_{1}})=d(varphi {{x}_{1}},{{x}_{1}})=d({{varphi }^{2}}{{x}_{0}},varphi {{x}_{0}})d(varphi {{x}_{0}},{{x}_{0}})=f({{x}_{0}})$

这与$f({{x}_{0}})$是$f$的最小值矛盾

于是$d(varphi {{x}_{0}},{{x}_{0}})=0$

即$varphi {{x}_{0}}={{x}_{0}}$

唯一性:设${{x}_{2}}$是$varphi $的另一个不动点,则$d({{x}_{0}},{{x}_{1}})=d(varphi {{x}_{0}},varphi {{x}_{1}})d({{x}_{0}},{{x}_{1}})$矛盾

于是$varphi $在$E$中存在唯一不动点

四、(10分)证明积分$int_{0}^{ ext{+}infty }{frac{sin xy}{x(1+y)}}dy$在$0delta le x+infty $上一致收敛,但在$0x+infty $上不一致收敛

证明:对任意的$delta 0$,当$xin [delta ,+infty )$时,有$left| int_{0}^{A}{sin xydy} ight|=left| frac{1-cos Ax}{x} ight|le frac{2}{delta }$

而$frac{1}{x(1+y)}$关于$y$单调递减且一致收敛于$0$

由$Dirichlet$判别法可知:$int_{0}^{ ext{+}infty }{frac{sin xy}{x(1+y)}}dy$在$0delta le x+infty $上一致收敛

另一方面:

取$A_{n}^{}=n(2npi +frac{pi }{4}),A_{n}^{}=n(2npi +frac{pi }{2}),{{x}_{n}}=frac{1}{n}$,则

$int_{A_{n}^{}}^{A_{n}^{}}{frac{sin {{x}_{n}}y}{{{x}_{n}}(1+y)}}dy=int_{n(2npi +frac{pi }{4})}^{n(2npi +frac{pi }{2})}{frac{nsin frac{y}{n}}{1+y}}dy$

$ge int_{n(2npi +frac{pi }{4})}^{n(2npi +frac{pi }{2})}{frac{sqrt{2}n}{2(1+y)}}dy$

$=frac{sqrt{2}}{2}nln [1+frac{npi }{4+n(8npi +pi )}]$

.而$underset{n o +infty }{mathop{lim }}\,frac{sqrt{2}}{2}nln [1+frac{npi }{4+n(8npi +pi )}]=underset{n o +infty }{mathop{lim }}\,frac{sqrt{2}{{n}^{2}}pi }{8+2n(8npi +pi )}=frac{sqrt{2}}{16}0$

则$int_{A_{n}^{}}^{A_{n}^{}}{frac{sin {{x}_{n}}y}{{{x}_{n}}(1+y)}}dyge frac{sqrt{2}}{16}$

故$int_{0}^{ ext{+}infty }{frac{sin xy}{x(1+y)}}dy$在$(0,+infty )$上不一致收敛

五、(10分)设$f(x)=sumlimits_{n=0}^{+infty }{{{a}_{n}}{{x}^{n}}}(-1x1)$,其中

$underset{n o +infty }{mathop{lim }}\,n{{a}_{n}}=0$

$underset{x o {{1}^{-}}}{mathop{lim }}\,f(x)=s$.

求证:$sumlimits_{n=0}^{+infty }{{{a}_{n}}}$一致收敛且和为$s$

证明:令${{delta }_{n}}=frac{sumlimits_{k=1}^{n}{left| k{{a}_{k}} ight|}}{n}$,下证

$underset{n o +infty }{mathop{lim }}\,{{delta }_{n}}=0$

由于$underset{n o +infty }{mathop{lim }}\,n{{a}_{n}}=0$

则对任意的$varepsilon 0$,总可以找到一个正整数$N(varepsilon )$,使得当时,总有$left| n{{a}_{n}} ight|frac{varepsilon }{2}$

当$nN(varepsilon )$就有$left| n{{a}_{n}} ight|frac{varepsilon }{2}$的最小自然数${{N}_{1}}$,当$n{{N}_{1}}$时,有

$left| frac{sumlimits_{k=0}^{n}{k{{a}_{k}}}}{n} ight|le frac{sumlimits_{k=0}^{n}{left| k{{a}_{k}} ight|}}{n}=frac{sumlimits_{k=0}^{{{N}_{1}}}{left| k{{a}_{k}} ight|}}{n}+frac{sumlimits_{k={{N}_{1}}+1}^{n}{left| k{{a}_{k}} ight|}}{n}frac{sumlimits_{k=0}^{{{N}_{1}}}{left| k{{a}_{k}} ight|}}{n}+frac{(n-{{N}_{1}})varepsilon }{2n}frac{sumlimits_{k=0}^{{{N}_{1}}}{left| k{{a}_{k}} ight|}}{n}+frac{varepsilon }{2}$

考虑到$underset{n o +infty }{mathop{lim }}\,frac{sumlimits_{k=0}^{{{N}_{1}}}{left| k{{a}_{k}} ight|}}{n}=0$

则对上述$varepsilon 0$,存在${{N}_{2}}0$,当$n{{N}_{2}}$时,有$frac{sumlimits_{k=0}^{n}{left| k{{a}_{k}} ight|}}{n}frac{varepsilon }{2}$

令$N=max {{{N}_{1}},{{N}_{2}}}$,当$nN$时,有$frac{sumlimits_{k=0}^{n}{left| k{{a}_{k}} ight|}}{n}varepsilon $

于是$underset{n o +infty }{mathop{lim }}\,{{delta }_{n}}=0$

由题可知:$underset{n o +infty }{mathop{lim }}\,f(1-frac{1}{n})=s$

于是存在$N0$,当$nN$时,有$left| f(1-frac{1}{n})-s ight|frac{varepsilon }{3},{{delta }_{n}}frac{varepsilon }{3},nleft| {{a}_{n}} ight|frac{varepsilon }{3}$

记${{S}_{n}}=sumlimits_{k=0}^{n}{{{a}_{k}}}$,且${{S}_{n}}-s=f(x)-s+sumlimits_{k=0}^{n}{{{a}_{k}}(1-{{x}^{k}})-sumlimits_{k=n+1}^{+infty }{{{a}_{k}}{{x}^{k}}}}$

注意到对每个$k$以及$xin (0,1)$,有$1-{{x}^{k}}=(1-x)(1+x+cdots +{{x}^{k-1}})le k(1-x)$

因此,当$nN$且$xin (0,1)$时,有

$left| {{S}_{n}}-s ight|le left| f(x)-s ight|+(1-x)sumlimits_{k=0}^{n}{kleft| {{a}_{n}} ight|}+frac{varepsilon }{3n(1-x)}$

令$x=1-frac{1}{n}$,则$left| {{S}_{n}}-s ight|frac{varepsilon }{3}+frac{varepsilon }{3}+frac{varepsilon }{3}=varepsilon $

即$sumlimits_{n=0}^{+infty }{{{a}_{n}}}$收敛且和为$s$

六、(15分)讨论正数$alpha 0$的初值问题$left{egin{array}{ll} y = {left| y ight|^alpha } \ y(0) = 0 end{array} ight.$的解的稳定性

解:由于$left| f(x,{{y}_{1}})-f(x,{{y}_{2}}) ight|=left| {{left| {{y}_{1}} ight|}^{alpha }}-{{left| {{y}_{2}} ight|}^{alpha }} ight|le left| y_{1}^{alpha }-y_{2}^{alpha } ight|le {{C}_{alpha }}{{left| {{y}_{1}}-{{y}_{2}} ight|}^{alpha }}$

令$F(r)={{left| r ight|}^{alpha }}$,有

$int_{0}^{{{r}_{1}}}{frac{dr}{F(r)}=}int_{0}^{{{r}_{1}}}{frac{dr}{{{left| r ight|}^{alpha }}}}$ $=left{egin{array}{ll} frac{1}{{1 - alpha }}{left| r ight|^{1 - alpha }}|_0^{{r_1}}, hbox{$alpha e 1$;} \ ln left| r ight||_0^{{r_1}}, hbox{$alpha=1$;} end{array} ight.$

因此当$alpha ge 1$时,$int_{0}^{{{r}_{1}}}{frac{dr}{F(r)}=infty }$

当$0alpha 1$时,$int_{0}^{{{r}_{1}}}{frac{dr}{F(r)}infty }$

于是$alpha ge 1$时解唯一;当$0alpha 1$时解不唯一

七、(15分)已知$A$是$n imes n$阶的非奇异复矩阵,求证:$A=UT$(其中$U$为酉矩阵,而$T$是对角线元素均大于$0$的对角矩阵)

证明:设$A={{({{a}_{ij}})}_{n imes n}},left| A ight| e 0$,令$A=({{alpha }_{1}},{{alpha }_{2}},cdots ,{{alpha }_{n}})$

其中${{alpha }_{i}}$为$A$的列向量,则${{alpha }_{1}},{{alpha }_{2}},cdots ,{{alpha }_{n}}$线性无关

由施密特正交化,令

$left{egin{array}{ll} {eta _1} = {alpha _1}, \ {eta _2} = {alpha _2} - frac{{({alpha _2},{eta _1})}}{{({eta _1},{eta _1})}}{eta _1}, \ vdots \ {eta _n} = {alpha _n} - frac{{({alpha _n},{eta _1})}}{{({eta _1},{eta _1})}}{eta _1} - cdots - frac{{({alpha _n},{eta _{n - 1}})}}{{({eta _{n - 1}},{eta _{n - 1}})}}{eta _{n - 1}} end{array} ight.$

其中$(alpha ,eta )=alpha eta $,则

$left{egin{array}{ll} {alpha _1} = {eta _1}, \ {alpha _2} = frac{{({alpha _2},{eta _1})}}{{({eta _1},{eta _1})}}{eta _1} + {eta _2}, \ vdots \ {alpha _n} = frac{{({alpha _n},{eta _1})}}{{({eta _1},{eta _1})}}{eta _1} - cdots - frac{{({alpha _n},{eta _{n - 1}})}}{{({eta _{n - 1}},{eta _{n - 1}})}}{eta _{n - 1}} + {eta _n} end{array} ight.$

于是

$A=({{alpha }_{1}},{{alpha }_{2}},cdots ,{{alpha }_{n}})$$ =({eta _1},{eta _2}, cdots ,{eta _n})left(egin{array}{cccc} 1 {{b_{12}}} cdots {{b_{1n}}} \ 0 1 cdots {{b_{1n}}} \ vdots vdots ddots vdots \  0 0 cdots 1 end{array} ight) $

其中${b_{ij}}=left{egin{array}{ll} frac{{({alpha _j},{eta _i})}}{{({eta _i},{eta _i})}}, hbox{$i e j$;} \ 1, hbox{$i = j$.} end{array} ight.$

将${{eta }_{i}}$单位化,即${{gamma }_{i}}=frac{{{eta }_{i}}}{left| {{eta }_{i}} ight|},left| {{eta }_{i}} ight|=sqrt{eta _{i}^{}{{eta }_{i}}}0,i=1,2,cdots ,n$

令$U=({{gamma }_{1}},{{gamma }_{2}},cdots ,{{gamma }_{n}})$,则$U$为酉矩阵,且

$A=({gamma _1},{gamma _2},cdots ,{gamma _n})$$ left(egin{array}{cccc} {left| {{eta _1}} ight|} \ {left| {{eta _2}} ight|} \ ddots \  {left| {{eta _n}} ight|} end{array} ight) $$ left(egin{array}{cccc} 1 {{b_{12}}} cdots {{b_{1n}}} \ 0 1 cdots {{b_{1n}}} \ vdots vdots ddots vdots \  0 0 cdots 1 end{array} ight) $=UT

其中$T=$$ left(egin{array}{cccc} {left| {{eta _1}} ight|} \ {left| {{eta _2}} ight|} \ ddots \  {left| {{eta _n}} ight|} end{array} ight) $$ left(egin{array}{cccc} 1 {{b_{12}}} cdots {{b_{1n}}} \ 0 1 cdots {{b_{1n}}} \ vdots vdots ddots vdots \  0 0 cdots 1 end{array} ight) $$ =left(egin{array}{cccc} {left| {{eta _1}} ight|} \ {left| {{eta _2}} ight|} \ ddots \  {left| {{eta _n}} ight|} end{array} ight) $是主对角元为正的上三角阵

八、(20分)设$V={{M}_{2}}(C)$是二阶复方阵全体在通常运算下构成的复数域$C$上的线性空间$ A=left(egin{array}{cccc} a b \ c d end{array} ight) $$ in V$定义$V$上的线性变换为 $f(X)=XA,forall Xin V$

(1)求$f$在$V$的基

[{E_{11}} = left( {egin{array}{*{20}{c}} 10\ 00 end{array}} ight),{E_{12}} = left( {egin{array}{*{20}{c}} 01\ 00 end{array}} ight),{E_{21}} = left( {egin{array}{*{20}{c}} 00\ 10 end{array}} ight),{E_{22}} = left( {egin{array}{*{20}{c}} 00\ 01 end{array}} ight)]

下的矩阵$M;$

(2)请给出$V$关于$f$的两个非零不变子空间${{V}_{1}},{{V}_{2}}$,使得$V={{V}_{1}}oplus {{V}_{2}}$(要求给出${{V}_{1}},{{V}_{2}}$的基,并阐述“${{V}_{1}},{{V}_{2}}$关于$f$是不变的”以及“$V={{V}_{1}}oplus {{V}_{2}}$”的理由);

(3)证明:存在$V$的一个基使得$f$在这个基下的矩阵为对角阵当且仅当$A$与对角阵相似.

解:

(1)由定义知:

$f({E_{11}}) $$ = left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} ight)left(egin{array}{cccc} a \ b \ 0 \ 0  end{array} ight) $,$f({E_{12}}) $$ = left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} ight)left(egin{array}{cccc} c \ d \ 0 \ 0  end{array} ight) $

$f({E_{21}}) $$ = left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} ight)left(egin{array}{cccc} 0 \ 0 \ a \ b  end{array} ight) $,$f({E_{22}}) $$ = left( {{E_{11}},{E_{12}},{E_{21}},{E_{22}}} ight)left(egin{array}{cccc} 0 \ 0 \ c \ d  end{array} ight) $

于是$f({E_{11}},{E_{12}},{E_{21}},{E_{22}})$$  = ({E_{11}},{E_{12}},{E_{21}},{E_{22}})left(egin{array}{cccc} a c 0 0 \ b d 0 0 \ 0 0 a c \  0 0 b d end{array} ight) $

即对应的矩阵为$left(egin{array}{cccc} a c 0 0 \ b d 0 0 \ 0 0 a c \  0 0 b d end{array} ight) $

(2)令${{V}_{1}}=L({{E}_{11}},{{E}_{12}}),{{V}_{2}}=L({{E}_{21}},{{E}_{22}})$,则${{V}_{1}},{{V}_{2}}$是关于$f$的不变子空间,理由如下

对任意的${k_{11}}{E_{11}} + {k_{12}}{E_{12}}$$  =left(egin{array}{cccc} {{k_{11}}} {{k_{12}}} \ 0 0  end{array} ight) $$ in V$,有

$f({k_{11}}{E_{11}} + {k_{12}}{E_{12}})$$  =left(egin{array}{cccc} {{k_{11}}} {{k_{12}}} \ 0 0  end{array} ight) $$left(egin{array}{cccc} a c \ b d  end{array} ight) $$=left(egin{array}{cccc} {a{k_{11}} + c{k_{12}}} {b{k_{11}} + d{k_{12}}} \ 0 0  end{array} ight) $$ in V$

则${{V}_{1}}$是关于$f$的不变子空间

同理可证${{V}_{2}}$是关于$f$的不变子空间

且$dim{{V}_{1}}=dim{{V}_{2}}=1,{{V}_{1}}cap {{V}_{2}}={0},dim{{V}_{1}}+dim{{V}_{2}}=2$

于是${{V}_{1}}oplus {{V}_{2}}=V$

(3)

充分性:设$A={{P}^{-1}}diag({{lambda }_{1}},{{lambda }_{2}})P$,其中${{lambda }_{1}},{{lambda }_{2}}$是$A$的全部特征值

则$f({{E}_{11}}P)={{lambda }_{1}}{{E}_{11}}P,f({{E}_{12}}P)={{lambda }_{2}}{{E}_{12}}P,f({{E}_{21}}P)={{lambda }_{1}}{{E}_{21}}P,f({{E}_{22}}P)={{lambda }_{2}}{{E}_{22}}P$

于是$f$在基${{E}_{11}}P,{{E}_{12}}P,{{E}_{21}}P,{{E}_{22}}P$下的矩阵为$ left(egin{array}{cccc} {{lambda _1}} \ {{lambda _2}} \ {{lambda _3}} \  {{lambda _4}} end{array} ight) $

必要性:若$A$不与对角阵相似

由于$A$是复矩阵,故存在可逆矩阵$Q$,使得$A=$$  {Q^{ - 1}}left(egin{array}{cccc} l k \ 0 l  end{array} ight) $$Q$,$k e 0$

于是

$f({{E}_{11}}Q)=l{{E}_{11}}Q+k{{E}_{12}}Q,f({{E}_{12}}Q)=l{{E}_{12}}Q,f({{E}_{21}}Q)=l{{E}_{21}}Q+k{{E}_{22}}Q,f({{E}_{22}}Q)=l{{E}_{22}}Q$

即$f$在基${{E}_{11}}Q,{{E}_{12}}Q,{{E}_{21}}Q,{{E}_{22}}Q$下的矩阵为$ left(egin{array}{cccc} l \ k l \ l \  k l end{array} ight) $

而$B$的初等因子为${{(lambda -l)}^{2}},{{(lambda -l)}^{2}}$,故$B$不与对角阵相似,矛盾

 

原文地址:https://www.cnblogs.com/zhangzujin/p/4054279.html