华中师范大学2008年数学分析考研试题参考解答

来源 [尊重原有作者劳动成果]

 

一、 计算题

1:解:

$underset{n o +infty }{mathop{lim }}\,frac{1}{n}sqrt[n]{n(n+1)(n+2)cdots (2n-1)}=underset{n o +infty }{mathop{lim }}\,frac{1}{n}sqrt[n]{frac{1}{2}(n+1)(n+2)cdots [n+(n-1)](n+n)} $

$=underset{n o +infty }{mathop{lim }}\,sqrt[n]{frac{1}{2}}cdot underset{n o +infty }{mathop{lim }}\,sqrt[n]{prodlimits_{i=1}^{n}{(1+frac{i}{n})}}=underset{n o +infty }{mathop{lim }}\,sqrt[n]{prodlimits_{i=1}^{n}{(1+frac{i}{n})}}$

$underset{n o +infty }{mathop{lim }}\,sqrt[n]{prodlimits_{i=1}^{n}{(1+frac{i}{n})}}={{e}^{underset{n o +infty }{mathop{lim }}\,frac{1}{n}sumlimits_{i=1}^{n}{ln (1+frac{i}{n})}}}={{e}^{int_{0}^{1}{ln (1+x)dx}}}$

由于

$int_{0}^{1}{ln (1+x)dx=xln (1+x)|_{0}^{1}}-int_{0}^{1}{frac{x}{1+x}}dx=ln 2-1+ln (1+x)|_{0}^{1}=2ln 2-1=ln frac{4}{e}$

于是

$underset{n o +infty }{mathop{lim }}\,frac{1}{n}sqrt[n]{n(n+1)(n+2)cdots (2n-1)}=frac{4}{e}$

2:解: 不妨设

$x=rsin varphi cos heta ,y=rsin varphi sin heta ,z=rcos varphi ,0le varphi le pi ,0le heta le 2pi ,0le rle t$

于是

$iiintlimits_{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}le {{t}^{2}}}{sin sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}dxdydz}=int_{0}^{2pi }{d heta int_{0}^{pi }{dvarphi int_{0}^{t}{{{r}^{2}}sin varphi cdot sin rdr}}}$

$=2pi cdot (-cos varphi )_{0}^{pi }cdot int_{0}^{t}{{{r}^{2}}}sin rdr=4pi int_{0}^{t}{{{r}^{2}}}sin rdr$

于是

$underset{t o {{0}^{+}}}{mathop{lim }}\,frac{iiintlimits_{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}le {{t}^{2}}}{sin sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}dxdydz}}{{{t}^{4}}}=underset{t o {{0}^{+}}}{mathop{lim }}\,frac{4pi int_{0}^{t}{{{r}^{2}}sin rdr}}{{{t}^{4}}}=underset{t o {{0}^{+}}}{mathop{lim }}\,frac{pi {{t}^{2}}sin t}{{{t}^{3}}}=pi $

3:解:不妨设

$P(x,y)=-frac{y}{{{x}^{2}}+9{{y}^{2}}},Q(x,y)=frac{x}{{{x}^{2}}+9{{y}^{2}}}$

于是

${{P}_{y}}=frac{9{{y}^{2}}-{{x}^{2}}}{{{x}^{2}}+9{{y}^{2}}},{{Q}_{x}}=frac{9{{y}^{2}}-{{x}^{2}}}{{{x}^{2}}+9{{y}^{2}}}$

记$D$是$L$所包围的封闭面积,由格林公式可知:

$oint_{L}{frac{xdy-ydx}{{{x}^{2}}+9{{y}^{2}}}}=iint_{D}{({{Q}_{y}}-{{P}_{x}})dxdy=0}$

二、 证明:不妨设$g(x)={{x}^{alpha }},0alpha 1,xin [0,+infty )$,且$[0,+infty )=[0,1]cup [1,+infty )$

对任意的$varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}in [1,+infty )$,由中值定理可知,存在$xi $在${{x}_{1}}$与${{x}_{2}}$之间,使得

$left| g({{x}_{1}})-g({{x}_{2}}) ight|=left| g(xi ) ight|left| {{x}_{1}}-{{x}_{2}} ight|=frac{alpha }{{{xi }^{^{1-alpha }}}}left| {{x}_{1}}-{{x}_{2}} ight|le alpha left| {{x}_{1}}-{{x}_{2}} ight|$

于是令$delta =frac{varepsilon }{alpha }$,当$left| {{x}_{1}}-{{x}_{2}} ight|delta $时,有$left| g({{x}_{1}})-g({{x}_{2}}) ight|varepsilon $

于是$g(x)$在$[1,+infty )$上一致连续

而$g(x)$在$[0,1]$上连续,则$g(x)$在$[0,1]$上一致连续

于是$g(x)$在$[0,+infty )$上一致连续

由$underset{x o infty }{mathop{lim }}\,f(x)$存在,则存在${{M}_{1}}0$,存在$N0$,当$nN$时,有$left| f(x) ight|{{M}_{1}}$

而$f(x)$在$[0,N+1]$上连续,则$f(x)$在$[0,N+1]$上有界

于是存在${{M}_{2}}0$,对一切$xin [0,N+1]$,有$left| f(x) ight|{{M}_{2}}$

令$M=max {{{M}_{1}},{{M}_{2}}}$,则对一切$xin [0,+infty )$,有$left| f(x) ight|M$

对任意的$varepsilon 0$,任意的${{x}_{3}},{{x}_{4}}in [0,+infty )$,由中值定理可知,存在$eta $在${{x}_{3}}$与${{x}_{4}}$之间,使得

$left| f(g({{x}_{3}}))-f(g({{x}_{4}})) ight|=left| f(eta ) ight|left| g({{x}_{3}})-g({{x}_{4}}) ight|Mleft| g({{x}_{3}})-g({{x}_{4}}) ight|$

由$g(x)$在$[0,+infty )$上一致连续

则对上述$varepsilon 0$,${{x}_{3}},{{x}_{4}}in [0,+infty )$,当$left| {{x}_{3}}-{{x}_{4}} ight|delta $时,有$left| g({{x}_{3}})-g({{x}_{4}}) ight|frac{varepsilon }{M}$

即$left| f(g({{x}_{3}}))-f(g({{x}_{4}})) ight|varepsilon$

于是$f({{x}^{alpha }})$在$[0,+infty )$上一致连续

三、 证明:不妨设

$F(x)=[f(x)-f(a)][g(b)-g(a)]-[f(b)-f(a)][g(x)-g(a)],xin [a,b]$

于是$F(a)=F(b)=0$

而$F(x)$在$[a,b]$上连续,$(a,b)$内可导,由罗尔定理可知:

存在$xi in (a,b)$,使得$F(xi )=0$

即$[f(b)-f(a)]g(xi )=[g(b)-g(a)]f(xi )$

四、

(1)证明:,对任意的$xin (0,+infty )$由于$underset{n o +infty }{mathop{lim }}\,frac{n}{{{e}^{nx}}}=0$,则$f(x)$在$(0,+infty )$上收敛

(2)证明:不妨设${{u}_{n}}(x)=n{{e}^{-nx}}$,由于$underset{n o +infty }{mathop{lim }}\,{{u}_{n}}(x)=0$

于是

$underset{xin (0,+infty )}{mathop{sup }}\,left| {{u}_{n}}(x)-0 ight|ge {{u}_{n}}(frac{1}{n})=n{{e}^{-1}} o +infty e 0(n o +infty )$

于是$sumlimits_{n=1}^{+infty }{n{{e}^{-nx}}}$在$(0,+infty )$上非一致收敛

(3)证明:由题可知:

$f(x)={{e}^{-x}}+2{{e}^{-2x}}+cdots +n{{e}^{-nx}}+(n+1){{e}^{-(n+1)x}}+cdots $

${{e}^{-x}}f(x)={{e}^{-2x}}+2{{e}^{-3x}}+cdots +n{{e}^{-(n+1)x}}+(n+1){{e}^{-(n+2)x}}+cdots $

于是

$(1-{{e}^{-x}})f(x)=sumlimits_{n=1}^{+infty }{{{e}^{-nx}}}=frac{{{e}^{-x}}}{1-{{e}^{-x}}}$

则$f(x)=frac{{{e}^{-x}}}{{{(1-{{e}^{-x}})}^{2}}}$

显然$f(x)$在$(0,+infty )$上无穷次可导

(或用定义进行证明)

五、设$F(x,y)={{x}^{2}}+y-sin (xy)$

(1) 显然,有$F(0,0)=0$

(2)${{F}_{y}}(x,y)=1-xcos (xy)$

(3)${{F}_{y}}(0,0)=1 e 0$

由隐函数存在定理,存在$delta 0$,存在$xin left[ delta ,+infty ight) $上的连续可微的函数$0{{{u}}_{n}}left( x ight)le frac{1}{{{n}^{3}}x}le frac{1}{delta }frac{1}{{{n}^{3}}}$,$y(0)=0$,满足$left[ delta ,+infty ight) $,${S}left( x ight)=sumlimits_{n=1}^{infty }{{{{{u}}}_{n}}left( x ight)} $,${{F}_{x}}=2x-ycos (xy)$,

且$y(x)=-frac{{{F}_{x}}(x,y)}{{{F}_{y}}(x,y)}=-frac{2x-ycos (xy)}{1-xcos (xy)}$

于是$y(0)=0$

六、

七、

(1)证明:由积分第一中值定理可知,存在${{x}_{n}}in [n-1,n]$,使得

$sumlimits_{n=1}^{+infty }{{{left| u({{x}_{n}}) ight|}^{2}}=sumlimits_{n=1}^{+infty }{int_{n-1}^{n}{{{left| u(x) ight|}^{2}}dx}=int_{0}^{+infty }{{{left| u(x) ight|}^{2}}dxle }}}int_{0}^{+infty }{({{left| u(x) ight|}^{2}}+{{left| u(x) ight|}^{2}})dx+infty }$

于是

$underset{n o +infty }{mathop{lim }}\,left| u{{({{x}_{n}})}^{2}} ight|=0Rightarrow underset{n o +infty }{mathop{lim }}\,left| u({{x}_{n}}) ight|=0$

于是存在$ [0,+infty ) $中的子列${{{x}_{n}}}_{0}^{+infty }$,使得当$n o +infty $时,${{x}_{n}} o +infty $且$u({{x}_{n}}) o 0$

(2)由于$int_{0}^{+infty }{({{left| u(x) ight|}^{2}}+{{left| u(x) ight|}^{2}})dx}$收敛,由柯西---施瓦兹不等式可知:

$left| {{u}^{2}}({{x}_{2}})-{{u}^{2}}({{x}_{1}}) ight|=2int_{{{x}_{1}}}^{{{x}_{2}}}{left| u(x)u(x) ight|}dxle int_{{{x}_{1}}}^{{{x}_{2}}}{({{left| u(x) ight|}^{2}}+{{left| u(x) ight|}^{2}})dx} o 0({{x}_{2}}ge {{x}_{1}} o +infty )$

于是由柯西收敛准则:${{u}^{2}}(x) o 0(x o +infty )Rightarrow u(x) o 0(x o +infty )$

而$u(x)$在$[0,+infty )$上连续,于是存在$M0$,使得$left| u(x) ight|le M$

令$C=frac{M}{sqrt{int_{0}^{+infty }{({{left| u(x) ight|}^{2}}+{{left| u(x) ight|}^{2}})dx}}}$

于是存在常数$C0$,使得

$underset{xin [0,+infty }}{mathop{sup }}\,left| u(x) ight|le C{{(int_{0}^{+infty }{({{left| u(x) ight|}^{2}}+{{left| {u}(x) ight|}^{2}})}dx)}^{frac{1}{2}}}$

八、

(1)证明:由于

$frac{partial u}{partial n}=frac{partial u}{partial x}cos (n,x)+frac{partial u}{partial y}cos (n,y)+frac{partial u}{partial z}cos (n,z)$

由第一型和第二型曲面积分的关系和$Guass$公式可知:

$iintlimits_{partial Omega }{vcdot frac{partial u}{partial n}}dS=iintlimits_{partial Omega }{v[frac{partial u}{partial x}cos (n,x)+frac{partial u}{partial y}cos (n,y)+frac{partial u}{partial z}cos (n,z)}]dS$

$=iintlimits_{partial Omega }{v[frac{partial u}{partial x}dydz+frac{partial u}{partial y}dzdx+frac{partial u}{partial z}dxdy]}$

$=iiint_{Omega }{vcdot Delta udxdydz+iiint_{Omega }{ abla vcdot abla udxdydz}}$

即[iiint_{Omega }{vDelta udxdydz=-}iiint_{Omega }{( abla ucdot abla v)dxdydz+iintlimits_{partial Omega }{vcdot frac{partial u}{partial n}}}dS]

(2)

 

原文地址:https://www.cnblogs.com/zhangzujin/p/4054272.html