[ 具体数学 ] 3:和式与封闭式

成套方法

解决将和式转为封闭式的方法

命题

\(\sum_{k=1}^nk\)转为封闭式

求解

方法:成套方法

  1. 转为递归式

\(S(n)=\sum_{k=1}^nk\)
不难看出,\(S(n)=S(n-1)+n\)

  1. 一般化

\(R(n)\)\(S(n)\)的一般形式
\(R(0)=\alpha \qquad R(n)=R(n-1)+\beta n+\gamma\)

(1) 令\(R(n)=1\)

\[\therefore R(0)=1 \]

\[\therefore \alpha = 1 \]

\[\because R(n)=R(n-1)+\beta n+\gamma \]

\[\therefore 1=1+\beta n + \gamma \]

\[ \left\{ \begin{aligned} \alpha = 1 \\ \beta = 0 \\ \gamma = 0 \end{aligned} \right. \]

(2) 令\(R(n)=n\)

\[\therefore R(0) = 0 \]

\[\therefore \alpha = 0 \]

\[\because R(n)=R(n-1)+\beta n+\gamma \]

\[\therefore n = (n-1)+\beta n + \gamma \]

\[ \left\{ \begin{aligned} \alpha = 0 \\ \beta = 0 \\ \gamma = 1 \end{aligned} \right. \]

(3) 令\(R(n) = n^2\)

\[\therefore R(0) = 0 \]

\[\therefore \alpha = 0 \]

\[\because R(n)=R(n-1)+\beta n+\gamma \]

\[\therefore n^2 = (n-1)^2+\beta n + \gamma \]

\[\therefore n^2 = n^2 - 2n + 1+\beta n + \gamma \]

\[\therefore -1 =(\beta - 2) n + \gamma \]

\[ \left\{ \begin{aligned} \alpha = 0 \\ \beta = 2 \\ \gamma = -1 \end{aligned} \right. \]

3.计算系数

\(R(n)=A(n)\alpha + B(n)\beta + C(n)\gamma\)

(1) 当\(R(n) = 1\)时:

\[\because\left\{ \begin{aligned} \alpha = 1 \\ \beta = 0 \\ \gamma = 0 \end{aligned} \right. \]

\[\therefore A(n) = 1 \]

(2) 当\(R(n) = n\)时:

\[\because\left\{ \begin{aligned} \alpha = 0 \\ \beta = 0 \\ \gamma = 1 \end{aligned} \right. \]

\[\therefore C(n) = n \]

(3) 当\(R(n) = n^2\)时:

\[ \left\{ \begin{aligned} \alpha = 0 \\ \beta = 2 \\ \gamma = -1 \end{aligned} \right. \]

\[\therefore 2B(n) - C(n) = n^2 \]

综上:

\[ \left\{ \begin{aligned} A(n) = 1 \\ C(n) = n \\ 2B(n) - C(n) = n^2 \end{aligned} \right. \]

解得

\[ \left\{ \begin{aligned} A(n) = 1 \\ B(n) = \frac{n\cdot (n+1)}{2} \\ C(n) = n \end{aligned} \right. \]

4.具体化

\[S(n) = S(n-1) + n \]

\(P(n)\)为当\(\beta = 1, \gamma = 0\)\(R(n)\)的值

\[\therefore P(n) = P(n-1) + n = S(n) \]

\(\therefore S(n)\)为当\(\beta = 1, \gamma = 0\)\(R(n)\)的值

\[\therefore S(n) = B(n) \]

\[\therefore S(n) = \frac{n \cdot (n+1)}{2} \]

原文地址:https://www.cnblogs.com/zhangtianli/p/12233360.html