源码阅读

在java.util.concurrent包中提供了一个线程安全版本的Map类型数据结构:ConcurrentMap。本篇文章主要关注ConcurrentMap接口以及它的Hash版本的实现ConcurrentHashMap。

 

一、ConcurrentMap

与Map接口相比,ConcurrentMap多了4个方法:

1)putIfAbsent方法:如果key不存在,添加key-value。方法会返回与key关联的value

V putIfAbsent(K key, V value);

2)remove方法

boolean remove(Object key, Object value);

 Map接口中也有一个remove方法:

V remove(Object key);

ConcurrentMap中的remove方法需要比较原有的value和参数中的value是否一致,只有一致才会删除。

3)Replace方法:有2个重载

boolean replace(K key, V oldValue, V newValue);
V replace(K key, V value);

两个重载的区别和2)中的两个remove方法的区别很类似,多了一个检查value一致。

 

二、ConcurrentHashMap

ConcurrentHashMap和HashMap类似,这里重点关注的是如何实现线程安全,也就是如何加锁。

对于HashMap来说,有一个Entry数组,根据Key的hash值对数组长度取模得到数组下标,找到Entry,遍历整个Entry链表,用equals比较来确定key所在的Entry。

ConcurrentHashMap的基本思想是采取分块的方式加锁,分块数由参数“concurrencyLevel”来决定(和HashMap中的“initialCapacity”类似,实际块数是第一个大于concurrencyLevel的2的n次方)。每个分块被称为Segment,Segment的索引方式和HashMap中的Entry索引方式一致(hash值对数组长度取模)。

 

对Segment加锁的方式很简单,直接把Segment定义为ReentrantLock的子类。同时Segment又是一个特定实现的hash table。

static final class Segment<K,V> extends ReentrantLock implements Serializable

 

下面分析ConcurrentHashMap读写时如何加锁。

首先是读操作类的方法,来看get方法:

public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

 可以看到,读取的时候没有调用的Segment的获取锁的方法,而是通过hash值定位到Entry,然后遍历Entry的链表。

为什么这里不用加锁呢?看看HashEntry的代码就会明白了。

    static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;

 value和next属性是带有volatile修饰符的,可以大胆放心的遍历和比较。

接着是写操作,写操作是肯定要加锁的。因为Segment可以看成是一个hash table,因此ConcurrentHashMap直接调用Segment的对应的写入方法如put,replace等。

比如put方法

    public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

 因此这里直接关注Segment的对应写操作方法即可。在每个写操作的方法开头都这样的类似代码:

        final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value

 也就是,首先尝试获取锁,如果成功则会带锁继续操作,失败则要通过scanAndLock或scanAndLockForPut获取锁,因此这里关注的重点也就转移到这两个方法了。

按照多线程环境的规则,如果尝试获取锁失败的话就会进入阻塞等待状态,那么这两个方法的作用应该是类似的。

        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
            HashEntry<K,V> first = entryForHash(this, hash);
            HashEntry<K,V> e = first;
            HashEntry<K,V> node = null;
            int retries = -1; // negative while locating node
            while (!tryLock()) {
                HashEntry<K,V> f; // to recheck first below
                if (retries < 0) {
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry<K,V>(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

 

这两个方法的逻辑:在等待的时候闲着没事儿干把该做好的准备做好,查找一下目标entry,如果是新建entry就把entry创建好,然后如果一切没问题就用lock()方法把自己给阻塞了,也就是做好准备然后去等着了。

原文地址:https://www.cnblogs.com/zcjcsl/p/8395304.html