十大基础有用算法之迪杰斯特拉算法、最小生成树和搜索算法

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其它节点的最短路径。 

它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

基本思想

     通过Dijkstra计算图G中的最短路径时,须要指定起点s(即从顶点s開始计算)。

     此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及对应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

     初始时。S中仅仅有起点s;U中是除s之外的顶点。而且U中顶点的路径是"起点s到该顶点的路径"。然后。从U中找出路径最短的顶点,并将其增加到S中;接着。更新U中的顶点和顶点相应的路径。 然后,再从U中找出路径最短的顶点,并将其增加到S中;接着,更新U中的顶点和顶点相应的路径。 ... 反复该操作,直到遍历全然部顶点。

操作步骤

(1) 初始时。S仅仅包括起点s。U包括除s外的其它顶点,且U中顶点的距离为"起点s到该顶点的距离"[比如,U中顶点v的距离为(s,v)的长度。然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k"。并将顶点k增加到S中。同一时候。从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。

之所以更新U中顶点的距离。是因为上一步中确定了k是求出最短路径的顶点,从而能够利用k来更新其他顶点的距离;比如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 反复步骤(2)和(3)。直到遍历全然部顶点。

单纯的看上面的理论可能比較难以理解,以下通过实例来对该算法进行说明。

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

 
第1步:将顶点D增加到S中。

 
    此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。

    注:C(3)表示C到起点D的距离是3。

第2步:将顶点C增加到S中。

 
    上一步操作之后,U中顶点C到起点D的距离最短。因此。将C增加到S中,同一时候更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;可是将C增加到S之后,F到D的距离为9=(F,C)+(C,D)。

 
    此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E增加到S中。

 
    上一步操作之后,U中顶点E到起点D的距离最短;因此,将E增加到S中,同一时候更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9。可是将E增加到S之后。F到D的距离为6=(F,E)+(E,D)。 
    此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F增加到S中。 
    此时。S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G增加到S中。

 
    此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B增加到S中。 
    此时。S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A增加到S中。

 
    此时。S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)

以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出对应的源代码。

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

// 边的结构体
typedef struct _EdgeData
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

Graph是邻接矩阵相应的结构体。 
vexs用于保存顶点。vexnum是顶点数,edgnum是边数。matrix则是用于保存矩阵信息的二维数组。比如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点。matrix[i][j]=0,则表示它们不是邻接点。 
EData是邻接矩阵边相应的结构体。

2. 迪杰斯特拉算法

/*
 * Dijkstra最短路径。
 * 即,统计图(G)中"顶点vs"到其他各个顶点的最短路径。

* * 參数说明: * G -- 图 * vs -- 起始顶点(start vertex)。即计算"顶点vs"到其他顶点的最短路径。 * prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的所有顶点中,位于"顶点i"之前的那个顶点。 * dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。 */ void dijkstra(Graph G, int vs, int prev[], int dist[]) { int i,j,k; int min; int tmp; int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化 for (i = 0; i < G.vexnum; i++) { flag[i] = 0; // 顶点i的最短路径还没获取到。 prev[i] = 0; // 顶点i的前驱顶点为0。 dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。 } // 对"顶点vs"自身进行初始化 flag[vs] = 1; dist[vs] = 0; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。

for (i = 1; i < G.vexnum; i++) { // 寻找当前最小的路径; // 即,在未获取最短路径的顶点中,找到离vs近期的顶点(k)。

min = INF; for (j = 0; j < G.vexnum; j++) { if (flag[j]==0 && dist[j]<min) { min = dist[j]; k = j; } } // 标记"顶点k"为已经获取到最短路径 flag[k] = 1; // 修正当前最短路径和前驱顶点 // 即。当已经"顶点k的最短路径"之后。更新"未获取最短路径的顶点的最短路径和前驱顶点"。

for (j = 0; j < G.vexnum; j++) { tmp = (G.matrix[k][j]==INF ?

INF : (min + G.matrix[k][j])); // 防止溢出 if (flag[j] == 0 && (tmp < dist[j]) ) { dist[j] = tmp; prev[j] = k; } } } // 打印dijkstra最短路径的结果 printf("dijkstra(%c): ", G.vexs[vs]); for (i = 0; i < G.vexnum; i++) printf(" shortest(%c, %c)=%d ", G.vexs[vs], G.vexs[i], dist[i]); }


邻接矩阵源代码:

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX         100                 // 矩阵最大容量
#define INF         (~(0x1<<31))        // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)   (sizeof(a)/sizeof(a[0]))

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

// 边的结构体
typedef struct _EdgeData
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

/*
 * 返回ch在matrix矩阵中的位置
 */
static int get_position(Graph G, char ch)
{
    int i;
    for(i=0; i<G.vexnum; i++)
        if(G.vexs[i]==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
static char read_char()
{
    char ch;

    do {
        ch = getchar();
    } while(!isLetter(ch));

    return ch;
}

/*
 * 创建图(自己输入)
 */
Graph* create_graph()
{
    char c1, c2;
    int v, e;
    int i, j, weight, p1, p2;
    Graph* pG;
    
    // 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!
");
        return NULL;
    }
    
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i] = read_char();
    }

    // 1. 初始化"边"的权值
    for (i = 0; i < pG->vexnum; i++)
    {
        for (j = 0; j < pG->vexnum; j++)
        {
            if (i==j)
                pG->matrix[i][j] = 0;
            else
                pG->matrix[i][j] = INF;
        }
    }
    // 2. 初始化"边"的权值: 依据用户的输入进行初始化
    for (i = 0; i < pG->edgnum; i++)
    {
        // 读取边的起始顶点。结束顶点,权值
        printf("edge(%d):", i);
        c1 = read_char();
        c2 = read_char();
        scanf("%d", &weight);

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);
        if (p1==-1 || p2==-1)
        {
            printf("input error: invalid edge!
");
            free(pG);
            return NULL;
        }

        pG->matrix[p1][p2] = weight;
        pG->matrix[p2][p1] = weight;
    }

    return pG;
}

/*
 * 创建图(用已提供的矩阵)
 */
Graph* create_example_graph()
{
    char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
    int matrix[][9] = {
             /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
      /*A*/ {   0,  12, INF, INF, INF,  16,  14},
      /*B*/ {  12,   0,  10, INF, INF,   7, INF},
      /*C*/ { INF,  10,   0,   3,   5,   6, INF},
      /*D*/ { INF, INF,   3,   0,   4, INF, INF},
      /*E*/ { INF, INF,   5,   4,   0,   2,   8},
      /*F*/ {  16,   7,   6, INF,   2,   0,   9},
      /*G*/ {  14, INF, INF, INF,   8,   9,   0}};
    int vlen = LENGTH(vexs);
    int i, j;
    Graph* pG;
    
    // 输入"顶点数"和"边数"
    if ((pG=(Graph*)malloc(sizeof(Graph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(Graph));

    // 初始化"顶点数"
    pG->vexnum = vlen;
    // 初始化"顶点"
    for (i = 0; i < pG->vexnum; i++)
        pG->vexs[i] = vexs[i];

    // 初始化"边"
    for (i = 0; i < pG->vexnum; i++)
        for (j = 0; j < pG->vexnum; j++)
            pG->matrix[i][j] = matrix[i][j];

    // 统计边的数目
    for (i = 0; i < pG->vexnum; i++)
        for (j = 0; j < pG->vexnum; j++)
            if (i!=j && pG->matrix[i][j]!=INF)
                pG->edgnum++;
    pG->edgnum /= 2;

    return pG;
}

/*
 * 返回顶点v的第一个邻接顶点的索引,失败则返回-1
 */
static int first_vertex(Graph G, int v)
{
    int i;

    if (v<0 || v>(G.vexnum-1))
        return -1;

    for (i = 0; i < G.vexnum; i++)
        if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
            return i;

    return -1;
}

/*
 * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
 */
static int next_vertix(Graph G, int v, int w)
{
    int i;

    if (v<0 || v>(G.vexnum-1) || w<0 || w>(G.vexnum-1))
        return -1;

    for (i = w + 1; i < G.vexnum; i++)
        if (G.matrix[v][i]!=0 && G.matrix[v][i]!=INF)
            return i;

    return -1;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
static void DFS(Graph G, int i, int *visited)
{                                   
    int w; 

    visited[i] = 1;
    printf("%c ", G.vexs[i]);
    // 遍历该顶点的全部邻接顶点。

若是没有訪问过。那么继续往下走 for (w = first_vertex(G, i); w >= 0; w = next_vertix(G, i, w)) { if (!visited[w]) DFS(G, w, visited); } } /* * 深度优先搜索遍历图 */ void DFSTraverse(Graph G) { int i; int visited[MAX]; // 顶点訪问标记 // 初始化全部顶点都没有被訪问 for (i = 0; i < G.vexnum; i++) visited[i] = 0; printf("DFS: "); for (i = 0; i < G.vexnum; i++) { //printf(" == LOOP(%d) ", i); if (!visited[i]) DFS(G, i, visited); } printf(" "); } /* * 广度优先搜索(相似于树的层次遍历) */ void BFS(Graph G) { int head = 0; int rear = 0; int queue[MAX]; // 辅组队列 int visited[MAX]; // 顶点訪问标记 int i, j, k; for (i = 0; i < G.vexnum; i++) visited[i] = 0; printf("BFS: "); for (i = 0; i < G.vexnum; i++) { if (!visited[i]) { visited[i] = 1; printf("%c ", G.vexs[i]); queue[rear++] = i; // 入队列 } while (head != rear) { j = queue[head++]; // 出队列 for (k = first_vertex(G, j); k >= 0; k = next_vertix(G, j, k)) //k是为訪问的邻接顶点 { if (!visited[k]) { visited[k] = 1; printf("%c ", G.vexs[k]); queue[rear++] = k; } } } } printf(" "); } /* * 打印矩阵队列图 */ void print_graph(Graph G) { int i,j; printf("Martix Graph: "); for (i = 0; i < G.vexnum; i++) { for (j = 0; j < G.vexnum; j++) printf("%10d ", G.matrix[i][j]); printf(" "); } } /* * prim最小生成树 * * 參数说明: * G -- 邻接矩阵图 * start -- 从图中的第start个元素開始。生成最小树 */ void prim(Graph G, int start) { int min,i,j,k,m,n,sum; int index=0; // prim最小树的索引,即prims数组的索引 char prims[MAX]; // prim最小树的结果数组 int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",由于是从start開始的。

prims[index++] = G.vexs[start]; // 初始化"顶点的权值数组", // 将每一个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。 for (i = 0; i < G.vexnum; i++ ) weights[i] = G.matrix[start][i]; // 将第start个顶点的权值初始化为0。

// 能够理解为"第start个顶点到它自身的距离为0"。 weights[start] = 0; for (i = 0; i < G.vexnum; i++) { // 由于从start開始的,因此不须要再对第start个顶点进行处理。 if(start == i) continue; j = 0; k = 0; min = INF; // 在未被增加到最小生成树的顶点中,找出权值最小的顶点。

while (j < G.vexnum) { // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经增加了最小生成树中)。 if (weights[j] != 0 && weights[j] < min) { min = weights[j]; k = j; } j++; } // 经过上面的处理后,在未被增加到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点增加到最小生成树的结果数组中 prims[index++] = G.vexs[k]; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经增加了最小树结果中)。 weights[k] = 0; // 当第k个顶点被增加到最小生成树的结果数组中之后。更新其他顶点的权值。

for (j = 0 ; j < G.vexnum; j++) { // 当第j个节点没有被处理,而且须要更新时才被更新。 if (weights[j] != 0 && G.matrix[k][j] < weights[j]) weights[j] = G.matrix[k][j]; } } // 计算最小生成树的权值 sum = 0; for (i = 1; i < index; i++) { min = INF; // 获取prims[i]在G中的位置 n = get_position(G, prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (j = 0; j < i; j++) { m = get_position(G, prims[j]); if (G.matrix[m][n]<min) min = G.matrix[m][n]; } sum += min; } // 打印最小生成树 printf("PRIM(%c)=%d: ", G.vexs[start], sum); for (i = 0; i < index; i++) printf("%c ", prims[i]); printf(" "); } /* * 获取图中的边 */ EData* get_edges(Graph G) { int i,j; int index=0; EData *edges; edges = (EData*)malloc(G.edgnum*sizeof(EData)); for (i=0;i < G.vexnum;i++) { for (j=i+1;j < G.vexnum;j++) { if (G.matrix[i][j]!=INF) { edges[index].start = G.vexs[i]; edges[index].end = G.vexs[j]; edges[index].weight = G.matrix[i][j]; index++; } } } return edges; } /* * 对边依照权值大小进行排序(由小到大) */ void sorted_edges(EData* edges, int elen) { int i,j; for (i=0; i<elen; i++) { for (j=i+1; j<elen; j++) { if (edges[i].weight > edges[j].weight) { // 交换"第i条边"和"第j条边" EData tmp = edges[i]; edges[i] = edges[j]; edges[j] = tmp; } } } } /* * 获取i的终点 */ int get_end(int vends[], int i) { while (vends[i] != 0) i = vends[i]; return i; } /* * 克鲁斯卡尔(Kruskal)最小生成树 */ void kruskal(Graph G) { int i,m,n,p1,p2; int length; int index = 0; // rets数组的索引 int vends[MAX]={0}; // 用于保存"已有最小生成树"中每一个顶点在该最小树中的终点。

EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边 EData *edges; // 图相应的全部边 // 获取"图中全部的边" edges = get_edges(G); // 将边依照"权"的大小进行排序(从小到大) sorted_edges(edges, G.edgnum); for (i=0; i<G.edgnum; i++) { p1 = get_position(G, edges[i].start); // 获取第i条边的"起点"的序号 p2 = get_position(G, edges[i].end); // 获取第i条边的"终点"的序号 m = get_end(vends, p1); // 获取p1在"已有的最小生成树"中的终点 n = get_end(vends, p2); // 获取p2在"已有的最小生成树"中的终点 // 假设m!=n,意味着"边i"与"已经增加到最小生成树中的顶点"没有形成环路 if (m != n) { vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n rets[index++] = edges[i]; // 保存结果 } } free(edges); // 统计并打印"kruskal最小生成树"的信息 length = 0; for (i = 0; i < index; i++) length += rets[i].weight; printf("Kruskal=%d: ", length); for (i = 0; i < index; i++) printf("(%c,%c) ", rets[i].start, rets[i].end); printf(" "); } /* * Dijkstra最短路径。 * 即。统计图(G)中"顶点vs"到其他各个顶点的最短路径。

* * 參数说明: * G -- 图 * vs -- 起始顶点(start vertex)。即计算"顶点vs"到其他顶点的最短路径。 * prev -- 前驱顶点数组。

即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中。位于"顶点i"之前的那个顶点。

* dist -- 长度数组。即。dist[i]是"顶点vs"到"顶点i"的最短路径的长度。 */ void dijkstra(Graph G, int vs, int prev[], int dist[]) { int i,j,k; int min; int tmp; int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。

// 初始化 for (i = 0; i < G.vexnum; i++) { flag[i] = 0; // 顶点i的最短路径还没获取到。 prev[i] = 0; // 顶点i的前驱顶点为0。 dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。

} // 对"顶点vs"自身进行初始化 flag[vs] = 1; dist[vs] = 0; // 遍历G.vexnum-1次。每次找出一个顶点的最短路径。

for (i = 1; i < G.vexnum; i++) { // 寻找当前最小的路径。 // 即。在未获取最短路径的顶点中,找到离vs近期的顶点(k)。 min = INF; for (j = 0; j < G.vexnum; j++) { if (flag[j]==0 && dist[j]<min) { min = dist[j]; k = j; } } // 标记"顶点k"为已经获取到最短路径 flag[k] = 1; // 修正当前最短路径和前驱顶点 // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。

for (j = 0; j < G.vexnum; j++) { tmp = (G.matrix[k][j]==INF ?

INF : (min + G.matrix[k][j])); // 防止溢出 if (flag[j] == 0 && (tmp < dist[j]) ) { dist[j] = tmp; prev[j] = k; } } } // 打印dijkstra最短路径的结果 printf("dijkstra(%c): ", G.vexs[vs]); for (i = 0; i < G.vexnum; i++) printf(" shortest(%c, %c)=%d ", G.vexs[vs], G.vexs[i], dist[i]); } void main() { int prev[MAX] = {0}; int dist[MAX] = {0}; Graph* pG; // 自己定义"图"(输入矩阵队列) //pG = create_graph(); // 採用已有的"图" pG = create_example_graph(); //print_graph(*pG); // 打印图 //DFSTraverse(*pG); // 深度优先遍历 //BFS(*pG); // 广度优先遍历 //prim(*pG, 0); // prim算法生成最小生成树 //kruskal(*pG); // kruskal算法生成最小生成树 // dijkstra算法获取"第4个顶点"到其他各个顶点的最短距离 dijkstra(*pG, 3, prev, dist); }


邻接表源代码:

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define MAX         100
#define INF         (~(0x1<<31))        // 最大值(即0X7FFFFFFF)
#define isLetter(a) ((((a)>='a')&&((a)<='z')) || (((a)>='A')&&((a)<='Z')))
#define LENGTH(a)   (sizeof(a)/sizeof(a[0]))

// 邻接表中表相应的链表的顶点
typedef struct _ENode
{
    int ivex;                   // 该边的顶点的位置
    int weight;                 // 该边的权
    struct _ENode *next_edge;   // 指向下一条弧的指针
}ENode, *PENode;

// 邻接表中表的顶点
typedef struct _VNode
{
    char data;              // 顶点信息
    ENode *first_edge;      // 指向第一条依附该顶点的弧
}VNode;

// 邻接表
typedef struct _LGraph
{
    int vexnum;             // 图的顶点的数目
    int edgnum;             // 图的边的数目
    VNode vexs[MAX];
}LGraph;

/*
 * 返回ch在matrix矩阵中的位置
 */
static int get_position(LGraph G, char ch)
{
    int i;
    for(i=0; i<G.vexnum; i++)
        if(G.vexs[i].data==ch)
            return i;
    return -1;
}

/*
 * 读取一个输入字符
 */
static char read_char()
{
    char ch;

    do {
        ch = getchar();
    } while(!isLetter(ch));

    return ch;
}

/*
 * 将node链接到list的末尾
 */
static void link_last(ENode *list, ENode *node)
{
    ENode *p = list;

    while(p->next_edge)
        p = p->next_edge;
    p->next_edge = node;
}

/*
 * 创建邻接表相应的图(自己输入)
 */
LGraph* create_lgraph()
{
    char c1, c2;
    int v, e;
    int i, p1, p2;
    int weight;
    ENode *node1, *node2;
    LGraph* pG;

    // 输入"顶点数"和"边数"
    printf("input vertex number: ");
    scanf("%d", &v);
    printf("input edge number: ");
    scanf("%d", &e);
    if ( v < 1 || e < 1 || (e > (v * (v-1))))
    {
        printf("input error: invalid parameters!
");
        return NULL;
    }
 
    if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(LGraph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = v;
    pG->edgnum = e;
    // 初始化"邻接表"的顶点
    for(i=0; i<pG->vexnum; i++)
    {
        printf("vertex(%d): ", i);
        pG->vexs[i].data = read_char();
        pG->vexs[i].first_edge = NULL;
    }

    // 初始化"邻接表"的边
    for(i=0; i<pG->edgnum; i++)
    {
        // 读取边的起始顶点,结束顶点,权
        printf("edge(%d): ", i);
        c1 = read_char();
        c2 = read_char();
        scanf("%d", &weight);

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);

        // 初始化node1
        node1 = (ENode*)malloc(sizeof(ENode));
        node1->ivex = p2;
        node1->weight = weight;
        // 将node1链接到"p1所在链表的末尾"
        if(pG->vexs[p1].first_edge == NULL)
          pG->vexs[p1].first_edge = node1;
        else
            link_last(pG->vexs[p1].first_edge, node1);
        // 初始化node2
        node2 = (ENode*)malloc(sizeof(ENode));
        node2->ivex = p1;
        node2->weight = weight;
        // 将node2链接到"p2所在链表的末尾"
        if(pG->vexs[p2].first_edge == NULL)
            pG->vexs[p2].first_edge = node2;
        else
            link_last(pG->vexs[p2].first_edge, node2);
    }

    return pG;
}

// 边的结构体
typedef struct _edata
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

// 顶点
static char  gVexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
// 边
static EData gEdges[] = {
  // 起点 终点 权
    {'A', 'B', 12}, 
    {'A', 'F', 16}, 
    {'A', 'G', 14}, 
    {'B', 'C', 10}, 
    {'B', 'F',  7}, 
    {'C', 'D',  3}, 
    {'C', 'E',  5}, 
    {'C', 'F',  6}, 
    {'D', 'E',  4}, 
    {'E', 'F',  2}, 
    {'E', 'G',  8}, 
    {'F', 'G',  9}, 
};

/*
 * 创建邻接表相应的图(用已提供的数据)
 */
LGraph* create_example_lgraph()
{
    char c1, c2;
    int vlen = LENGTH(gVexs);
    int elen = LENGTH(gEdges);
    int i, p1, p2;
    int weight;
    ENode *node1, *node2;
    LGraph* pG;

    if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
        return NULL;
    memset(pG, 0, sizeof(LGraph));

    // 初始化"顶点数"和"边数"
    pG->vexnum = vlen;
    pG->edgnum = elen;
    // 初始化"邻接表"的顶点
    for(i=0; i<pG->vexnum; i++)
    {
        pG->vexs[i].data = gVexs[i];
        pG->vexs[i].first_edge = NULL;
    }

    // 初始化"邻接表"的边
    for(i=0; i<pG->edgnum; i++)
    {
        // 读取边的起始顶点,结束顶点,权
        c1 = gEdges[i].start;
        c2 = gEdges[i].end;
        weight = gEdges[i].weight;

        p1 = get_position(*pG, c1);
        p2 = get_position(*pG, c2);

        // 初始化node1
        node1 = (ENode*)malloc(sizeof(ENode));
        node1->ivex = p2;
        node1->weight = weight;
        // 将node1链接到"p1所在链表的末尾"
        if(pG->vexs[p1].first_edge == NULL)
            pG->vexs[p1].first_edge = node1;
        else
            link_last(pG->vexs[p1].first_edge, node1);
        // 初始化node2
        node2 = (ENode*)malloc(sizeof(ENode));
        node2->ivex = p1;
        node2->weight = weight;
        // 将node2链接到"p2所在链表的末尾"
        if(pG->vexs[p2].first_edge == NULL)
            pG->vexs[p2].first_edge = node2;
        else
            link_last(pG->vexs[p2].first_edge, node2);
    }

    return pG;
}

/*
 * 深度优先搜索遍历图的递归实现
 */
static void DFS(LGraph G, int i, int *visited)
{
    int w;
    ENode *node;

    visited[i] = 1;
    printf("%c ", G.vexs[i].data);
    node = G.vexs[i].first_edge;
    while (node != NULL)
    {
        if (!visited[node->ivex])
            DFS(G, node->ivex, visited);
        node = node->next_edge;
    }
}

/*
 * 深度优先搜索遍历图
 */
void DFSTraverse(LGraph G)
{
    int i;
    int visited[MAX];       // 顶点訪问标记

    // 初始化全部顶点都没有被訪问
    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("DFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
            DFS(G, i, visited);
    }
    printf("
");
}

/*
 * 广度优先搜索(相似于树的层次遍历)
 */
void BFS(LGraph G)
{
    int head = 0;
    int rear = 0;
    int queue[MAX];     // 辅组队列
    int visited[MAX];   // 顶点訪问标记
    int i, j, k;
    ENode *node;

    for (i = 0; i < G.vexnum; i++)
        visited[i] = 0;

    printf("BFS: ");
    for (i = 0; i < G.vexnum; i++)
    {
        if (!visited[i])
        {
            visited[i] = 1;
            printf("%c ", G.vexs[i].data);
            queue[rear++] = i;  // 入队列
        }
        while (head != rear) 
        {
            j = queue[head++];  // 出队列
            node = G.vexs[j].first_edge;
            while (node != NULL)
            {
                k = node->ivex;
                if (!visited[k])
                {
                    visited[k] = 1;
                    printf("%c ", G.vexs[k].data);
                    queue[rear++] = k;
                }
                node = node->next_edge;
            }
        }
    }
    printf("
");
}

/*
 * 打印邻接表图
 */
void print_lgraph(LGraph G)
{
    int i,j;
    ENode *node;

    printf("List Graph:
");
    for (i = 0; i < G.vexnum; i++)
    {
        printf("%d(%c): ", i, G.vexs[i].data);
        node = G.vexs[i].first_edge;
        while (node != NULL)
        {
            printf("%d(%c) ", node->ivex, G.vexs[node->ivex].data);
            node = node->next_edge;
        }
        printf("
");
    }
}

/*
 * 获取G中边<start, end>的权值。若start和end不是连通的,则返回无穷大。
 */
int get_weight(LGraph G, int start, int end)
{
    ENode *node;

    if (start==end)
        return 0;

    node = G.vexs[start].first_edge;
    while (node!=NULL)
    {
        if (end==node->ivex)
            return node->weight;
        node = node->next_edge;
    }

    return INF;
}

/*
 * prim最小生成树
 *
 * 參数说明:
 *       G -- 邻接表图
 *   start -- 从图中的第start个元素開始。生成最小树
 */
void prim(LGraph G, int start)
{
    int min,i,j,k,m,n,tmp,sum;
    int index=0;         // prim最小树的索引。即prims数组的索引
    char prims[MAX];     // prim最小树的结果数组
    int weights[MAX];    // 顶点间边的权值

    // prim最小生成树中第一个数是"图中第start个顶点"。由于是从start開始的。
    prims[index++] = G.vexs[start].data;

    // 初始化"顶点的权值数组",
    // 将每一个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
    for (i = 0; i < G.vexnum; i++ )
        weights[i] = get_weight(G, start, i);

    for (i = 0; i < G.vexnum; i++)
    {
        // 由于从start開始的。因此不须要再对第start个顶点进行处理。
        if(start == i)
            continue;

        j = 0;
        k = 0;
        min = INF;
        // 在未被增加到最小生成树的顶点中,找出权值最小的顶点。

while (j < G.vexnum) { // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经增加了最小生成树中)。 if (weights[j] != 0 && weights[j] < min) { min = weights[j]; k = j; } j++; } // 经过上面的处理后。在未被增加到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点增加到最小生成树的结果数组中 prims[index++] = G.vexs[k].data; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经增加了最小树结果中)。

weights[k] = 0; // 当第k个顶点被增加到最小生成树的结果数组中之后,更新其他顶点的权值。 for (j = 0 ; j < G.vexnum; j++) { // 获取第k个顶点到第j个顶点的权值 tmp = get_weight(G, k, j); // 当第j个节点没有被处理,而且须要更新时才被更新。 if (weights[j] != 0 && tmp < weights[j]) weights[j] = tmp; } } // 计算最小生成树的权值 sum = 0; for (i = 1; i < index; i++) { min = INF; // 获取prims[i]在G中的位置 n = get_position(G, prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (j = 0; j < i; j++) { m = get_position(G, prims[j]); tmp = get_weight(G, m, n); if (tmp < min) min = tmp; } sum += min; } // 打印最小生成树 printf("PRIM(%c)=%d: ", G.vexs[start].data, sum); for (i = 0; i < index; i++) printf("%c ", prims[i]); printf(" "); } /* * 获取图中的边 */ EData* get_edges(LGraph G) { int i,j; int index=0; ENode *node; EData *edges; edges = (EData*)malloc(G.edgnum*sizeof(EData)); for (i=0; i<G.vexnum; i++) { node = G.vexs[i].first_edge; while (node != NULL) { if (node->ivex > i) { edges[index].start = G.vexs[i].data; // 起点 edges[index].end = G.vexs[node->ivex].data; // 终点 edges[index].weight = node->weight; // 权 index++; } node = node->next_edge; } } return edges; } /* * 对边依照权值大小进行排序(由小到大) */ void sorted_edges(EData* edges, int elen) { int i,j; for (i=0; i<elen; i++) { for (j=i+1; j<elen; j++) { if (edges[i].weight > edges[j].weight) { // 交换"第i条边"和"第j条边" EData tmp = edges[i]; edges[i] = edges[j]; edges[j] = tmp; } } } } /* * 获取i的终点 */ int get_end(int vends[], int i) { while (vends[i] != 0) i = vends[i]; return i; } /* * 克鲁斯卡尔(Kruskal)最小生成树 */ void kruskal(LGraph G) { int i,m,n,p1,p2; int length; int index = 0; // rets数组的索引 int vends[MAX]={0}; // 用于保存"已有最小生成树"中每一个顶点在该最小树中的终点。

EData rets[MAX]; // 结果数组,保存kruskal最小生成树的边 EData *edges; // 图相应的全部边 // 获取"图中全部的边" edges = get_edges(G); // 将边依照"权"的大小进行排序(从小到大) sorted_edges(edges, G.edgnum); for (i=0; i<G.edgnum; i++) { p1 = get_position(G, edges[i].start); // 获取第i条边的"起点"的序号 p2 = get_position(G, edges[i].end); // 获取第i条边的"终点"的序号 m = get_end(vends, p1); // 获取p1在"已有的最小生成树"中的终点 n = get_end(vends, p2); // 获取p2在"已有的最小生成树"中的终点 // 假设m!=n。意味着"边i"与"已经增加到最小生成树中的顶点"没有形成环路 if (m != n) { vends[m] = n; // 设置m在"已有的最小生成树"中的终点为n rets[index++] = edges[i]; // 保存结果 } } free(edges); // 统计并打印"kruskal最小生成树"的信息 length = 0; for (i = 0; i < index; i++) length += rets[i].weight; printf("Kruskal=%d: ", length); for (i = 0; i < index; i++) printf("(%c,%c) ", rets[i].start, rets[i].end); printf(" "); } /* * Dijkstra最短路径。

* 即。统计图(G)中"顶点vs"到其他各个顶点的最短路径。 * * 參数说明: * G -- 图 * vs -- 起始顶点(start vertex)。

即计算"顶点vs"到其他顶点的最短路径。 * prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。

* dist -- 长度数组。即。dist[i]是"顶点vs"到"顶点i"的最短路径的长度。

*/ void dijkstra(LGraph G, int vs, int prev[], int dist[]) { int i,j,k; int min; int tmp; int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化 for (i = 0; i < G.vexnum; i++) { flag[i] = 0; // 顶点i的最短路径还没获取到。 prev[i] = 0; // 顶点i的前驱顶点为0。

dist[i] = get_weight(G, vs, i); // 顶点i的最短路径为"顶点vs"到"顶点i"的权。 } // 对"顶点vs"自身进行初始化 flag[vs] = 1; dist[vs] = 0; // 遍历G.vexnum-1次。每次找出一个顶点的最短路径。

for (i = 1; i < G.vexnum; i++) { // 寻找当前最小的路径。 // 即,在未获取最短路径的顶点中,找到离vs近期的顶点(k)。 min = INF; for (j = 0; j < G.vexnum; j++) { if (flag[j]==0 && dist[j]<min) { min = dist[j]; k = j; } } // 标记"顶点k"为已经获取到最短路径 flag[k] = 1; // 修正当前最短路径和前驱顶点 // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。

for (j = 0; j < G.vexnum; j++) { tmp = get_weight(G, k, j); tmp = (tmp==INF ? INF : (min + tmp)); // 防止溢出 if (flag[j] == 0 && (tmp < dist[j]) ) { dist[j] = tmp; prev[j] = k; } } } // 打印dijkstra最短路径的结果 printf("dijkstra(%c): ", G.vexs[vs].data); for (i = 0; i < G.vexnum; i++) printf(" shortest(%c, %c)=%d ", G.vexs[vs].data, G.vexs[i].data, dist[i]); } void main() { int prev[MAX] = {0}; int dist[MAX] = {0}; LGraph* pG; // 自己定义"图"(自己输入数据) //pG = create_lgraph(); // 採用已有的"图" pG = create_example_lgraph(); //print_lgraph(*pG); // 打印图 //DFSTraverse(*pG); // 深度优先遍历 //BFS(*pG); // 广度优先遍历 //prim(*pG, 0); // prim算法生成最小生成树 //kruskal(*pG); // kruskal算法生成最小生成树 // dijkstra算法获取"第4个顶点"到其他各个顶点的最短距离 dijkstra(*pG, 3, prev, dist); }



原文地址:https://www.cnblogs.com/yutingliuyl/p/6792243.html