【BZOJ3529】【SDOI2014】数表

Time Limit: 1000 ms Memory Limit: 512 MB

Description

有一张n×m的数表,其第i行第j列 (1≤i≤n,1≤j≤m)的数值为能同时整除i和j的所有自然数之和。
现在给定a,计算数表中不大于a的数之和。

input

输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(a≤(10^9))描述一组数据。

output

对每组数据,输出一行一个整数,表示答案模(2^31)的值。

sample input

2
4 4 3
10 10 5

sample output

20
148

HINT

(n,m≤10^5,Q≤2∗10^4)


solution

(a)的限制很烦,但其实如果最后式子推出来的话,我们可以离线来处理

那就先看去掉这个限制的问题怎么解决咯

先把式子列出来

[egin{aligned} ans&=sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}sumlimits_{d|i,d|j}d\ &=sumlimits_{i=1}{n}sumlimits_{j=1}{m}sumlimits_{d=1}^{min(n,m)}f(d) [gcd(i,j) = d]&(f(d) = sumlimits_{x|d}x)\ &=sumlimits_{d=1}^{min(n,m)}f(d)sumlimits_{i=1}^{lfloorfrac{n}{d} floor}sumlimits_{j=1}^{lfloorfrac{m}{d} floor}[gcd(i,j)=1]\ &=sumlimits_{d=1}^{min(n,m)}f(d)sumlimits_{i=1}^{lfloorfrac{n}{d} floor}sumlimits_{j=1}^{lfloorfrac{m}{d} floor}sumlimits_{k|i,k|j}mu(k)&(sumlimits_{k|gcd(i,j)}mu(k) = [gcd(i,j)=1])\ &=sumlimits_{d=1}^{min(n,m)}f(d)sumlimits_{k=1}^{min(lfloorfrac{n}{d} floor,lfloorfrac{m}{d} floor)}lfloorfrac{lfloor frac{n}{d} floor}{k} floorlfloorfrac{lfloor frac{m}{d} floor}{k} floormu(k)\ &=sumlimits_{d=1}^{min(n,m)}f(d)sumlimits_{k=1}^{min(lfloorfrac{n}{d} floor,lfloorfrac{m}{d} floor)}lfloorfrac{lfloor n floor}{dk} floorlfloorfrac{lfloor m floor}{dk} floormu(k)\ &=sumlimits_{t=1}^{min(n,m)}lfloorfrac{lfloor n floor}{t} floorlfloorfrac{lfloor m floor}{t} floorsumlimits_{k|t}mu(k)&(t=dk)\ &=sumlimits_{t=1}^{min(n,m)}lfloorfrac{lfloor n floor}{t} floorlfloorfrac{lfloor m floor}{t} floor g(t)&(g(x) = sumlimits_{kp=x}f(p)mu(k))\ end{aligned} ]

然后前面下取整的东西分块搞定就好了,(g(t))的话,因为可以通过枚举约数来求,复杂度是根号的,所以就直接枚举来求就好了,(mu)的话可以筛出来,那么……

考虑(f)怎么求

有个约数和定理

[若n=sumlimits_{i=1}^{k}p_i^{a_i},p_i为n的质因数,那么n的约数和f(n)满足 f(n)=prodlimits_{i=1}^{k}sumlimits_{j=0}^{a_i}p_i^j ]

(f)的话首先是个积性函数,我们在筛(mu)的时候想顺便把这个也筛出来

考虑(f(d))的值,如果说(d)是质数的话答案显然是(d+1),下面讨论(d)为合数的情况

(d=i * p),其中(p)为质数

  1. (p mid i),那么(p)(i)互质,所以(f(d) = f(p) * f(i))

  2. (pmid i),设(i = t * p^x) ,那么根据约数和定理,我们可以得

    [f(i*p) = f(t)f(p^{x+1}) = f(t)sumlimits_{i=0}^{x+1}p^i ]

    然后我们把(p^0)(也就是1)拿出来,得到

    [f(i * p) = f(t) + f(t)*sumlimits_{i=1}^{x+1}p^i = f(t) + f(t)*f(p^x)*p ]

    然后(i = t * p^x),所以(f(t) * f(p^x) = f(i))

    所以最后就是(f(d) = f(t) + f(i) * p)

然后就可以筛出(f(d))

剩下的东西

现在加上(a)的限制,其实就是离线处理

我们先将所有的询问按照(a)的大小排序,然后从小到大处理

因为分块的时候我们要用到的是(g(x))的前缀和,所以用一个树状数组来处理

(f(x))排个序,枚举的时候只枚举到(f(x)<a),然后枚举另一个约数求出(g),丢到树状数组里面去

求答案的时候直接查询就好了

others

这题的话如果直接取模会被卡常。。因为模数很特殊所以可以自然溢出来取模,最后记得给ans&上一个2147483647


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int MAXN=1e5+10;
const int MOD=2147483647;
struct Q{
	int id,n,m,a;
	friend bool operator <(Q x,Q y)
	{return x.a<y.a;}
}q[MAXN];
int miu[MAXN],g[MAXN],p[MAXN],f[MAXN],loc[MAXN];
ll c[MAXN];
int ans[MAXN];
bool vis[MAXN];
int n,m,T,maxn,a,pos,nowans;
int prework(int n);
int ksm(int x,int y);
int add(int x,ll delta);
ll query(int x);
bool cmp(int x,int y){return f[x]<f[y];}

int main(){
#ifndef ONLINE_JUDGE
	freopen("a.in","r",stdin);
	freopen("a.out","w",stdout);
#endif
	scanf("%d",&T);
	maxn=0;
	for (int i=1;i<=T;++i){
		scanf("%d%d%d",&q[i].n,&q[i].m,&q[i].a);
		q[i].id=i;
		if (q[i].n>q[i].m) swap(q[i].n,q[i].m);
		maxn=max(maxn,q[i].n);
	}
	prework(maxn);
	sort(q+1,q+1+T);
	for (int i=1;i<=maxn;++i) loc[i]=i;
	sort(loc+1,loc+1+maxn,cmp);
	int now=1;
	for (int o=1;o<=T;++o){
		n=q[o].n;
		m=q[o].m;
		a=q[o].a;
		while (now<=maxn&&f[loc[now]]<=a){
			for (int t=1;t*loc[now]<=maxn;++t)
				add(t*loc[now],f[loc[now]]*miu[t]);
			++now;
		}
		nowans=pos=0;
		for (int i=1;i<=n;i=pos+1){
			pos=min(n/(n/i),m/(m/i));
			nowans+=(n/i)*(m/i)*(query(pos)-query(i-1));
		}
		ans[q[o].id]=nowans&MOD;
	}
	for (int i=1;i<=T;++i) printf("%lld
",ans[i]);
}

int prework(int n){
	miu[1]=1; f[1]=1;
	memset(vis,false,sizeof(vis));
	int cnt=0,tmp,tot;
	for (int i=2;i<=n;++i){
		if (!vis[i]){
			p[++cnt]=i;
			miu[i]=-1;
			f[i]=i+1;
		}
		for (int j=1;j<=cnt&&p[j]*i<=n;++j){
			vis[i*p[j]]=true;
			if (i%p[j]){
				miu[i*p[j]]=-miu[i];
				f[i*p[j]]=f[i]*(1+p[j]);
			}
			else{
				miu[i*p[j]]=0;
				tmp=i;tot=1;
				while (tmp%p[j]==0) tmp/=p[j];
				f[i*p[j]]=f[tmp]+p[j]*f[i];
			}
		}
	}
}


int add(int x,ll delta){
	for (;x<=maxn;x+=x&-x)
		c[x]+=delta;
}

ll query(int x){
	ll ret=0;
	for (;x;x-=x&-x)
		ret+=c[x];
	return ret;
}
原文地址:https://www.cnblogs.com/yoyoball/p/8231384.html