Icc编译MySQL性能调研

传统的c/c++编译器为GNU的gcc/g++,当然我们也通常使用gcc/g++来编译MySQL。但是有研究指出gcc/g++编译器对c/c++优化在某些方面做的并不好。Intel针对自己的处理器特点发布了编译器icc。本文希望使用icc编译得到MySQL,然后通过测试得到icc编译出的MySQL在性能等方面的特点。

测试环境

1.1使用icc编译器编译MySQL5.0

在configure前需要通过CC,CXX等变量改变编译器为icc。具体命令如下:

CC=icc CXX=icpc CFLAGS="-O3 -unroll2  -no-gcc –restrict -fPIC" CXXFLAGS="-O3 -unroll2  -no-gcc –restrict -fPIC" ./configure ……

上述需要注意的是-fPIC参数,如果不添加这个参数,编译过程中会出现“could not read symbols:bad value”错误。

1.2使用icc编译器编译MySQL5.1

在编译mysql5.1时,除了像编译5.0那样修改CC,CXX参数外,还需要修改mysql5.1(5.1.40)mysys/stacktrace.c中的代码,以避免编译过程中出现重定义错误。该错误是由于icc编译器和gcc编译支持的代码特性不同引起的。

char __attribute__ ((weak)) *

my_demangle(const char *mangled_name __attribute__((unused)),

            int *status __attribute__((unused)))

{

  return NULL;

}

改为:

#if defined(__INTEL_COMPILER)

#pragma weak my_demangle=my_demangle_null

char *my_demangle_null(const char *mangled_name, int *status)

{

  return NULL;

}

#else

char __attribute__ ((weak)) *my_demangle(const char *mangled_name, int *status)

{

  return NULL;

}

#endif /* !__INTEL_COMPILER */

1.3测试机器及环境

测试机有4颗CPU,16G内存。Icc编译的mysql和gcc编译的mysql同时安装在这台机器上,以避免由于机器差异而引起的性能差异。两个mysql的配置文件是相同的,以避免cache等参数的不同,引起的性能差异。

正确性测试方法及结果

2.1 正确性测试方法

本节是验证icc编译的mysql在程序逻辑和行为上的正确性。测试方法是选取某数据库的数据和两条典型SQL,分别在icc编译的mysql和gcc编译的mysql上执行。对比它们的输出来验证:icc编译的mysql执行结果是否和gcc编译的mysql的执行结果一致。测试包含对InnoDB和MyISAM两种引擎的分别测试。测试使用的两个SQL:

SQL1:select * from tb_customer where urldomain like "%.net" and status=3;

SQL2:update tb_customer set cust_prov=20 where pose_id=178;

针对SQL2,在执行完SQL2后,使用“select cust_prov from tb_customer where pose_id=178;”观察输出来验证SQL2执行的正确性。

2.2 正确性测试结果

下表中的数据是相关测试结果:

正确性测试结果

InnoDB

MyISAM

SQL1执行结果的MD5

SQL2执行结果的MD5

SQL1执行结果的MD5

SQL1执行结果的MD5

Icc编译的mysql

6d48abf99ba07623 e98312079c4ae84f

a76c01d4047639de d05bc06d8b800e96

6d48abf99ba07623 e98312079c4ae84f

a76c01d4047639de d05bc06d8b800e96

Gcc编译的mysql

6d48abf99ba07623 e98312079c4ae84f

a76c01d4047639de d05bc06d8b800e96

6d48abf99ba07623 e98312079c4ae84f

a76c01d4047639de d05bc06d8b800e96

表1

通过上表可以看出,icc编译的mysql在上述两个SQL上执行结果完全一致。通过本节测试可以证明icc编译的mysql在程序逻辑和行为上的正确性。

性能测试方法

本节整个测试分成两部分:1使用sql-bench对icc编译的mysql和gcc编译的mysql进行对比测试;2使用mysqlslap、某数据库数据对两个编译版本的mysql进行对比测试。

3.1使用sql-bench的测试方法

Sql-bench是一些通用的测试benchmark的集合,这些benchmark覆盖了多种SQL操作。它们的特点是测试表中的数据量不是太大,测试用的SQL操作丰富。测试方法:运行两个sql-bench,以相同的bench-mark测试icc编译的mysql和gcc编译的mysql。测试中包含针对InnoDB和MyISAM两种引擎的分别测试。

在测试过程中统计top中cpu信息和相关mysql进程内存占用信息,然后取均值。这些值均是以占机器总cpu时间,总物理内存的百分比的形式给出。以获得icc编译的mysql和gcc编译的mysql资源占用的比较。同时统计相关SQL集合的执行时间,以获得两个编译版本在执行时间(QPS)上的对比。

3.2使用mysqlslap的测试方法

测试工具是mysqlslap,测试数据库是某数据库。测试中包含针对InnoDB和MyISAM两种引擎的分别测试。

对于InnoDB引擎:测试脚本是从上述数据库一天的全日制中抽取了10000条update和select类型的SQL。这些SQL组成了全测试脚本。在这个测试脚本的基础上,从中挑选了3个有代表性的SQL作为3个独立的测试脚本。

对于MyISAM引擎,从上面的测试脚本中挑选了4个有代表性的SQL,将它们对应的表转化成了MyISAM引擎进行测试。

测试方法:使用mysqlslap,同样的测试脚本,对icc编译的mysql和gcc编译的mysql进行测试。在全脚本测试过程中统计top中cpu信息和相关mysql进程内存占用信息,然后取均值。同时统计相关SQL集合的执行时间。对于后续的单独SQL测试,由于这些SQL资源消耗比较小,执行时间都比较短,没有采集执行它们时的资源消耗。

性能测试结果及分析

4.1使用sql-bench性能测试结果及分析

使用sql-bench的测试结果如下:

InnoDB

执行时间

Cpu%(us)

Cpu%(sy)

Cpu%(id)

Mem%

Icc编译的mysql

1427s

20.4

5.1

70.8

7.9

Gcc编译的mysql

1248s

19.6

5.9

70.5

9.7

Icc较gcc的优势

-14.3%

-

-

-

-

MyISAM

执行时间

 

 

 

 

Icc编译的mysql

502.69s

19.1

8.0

71.5

4.4

Gcc编译的mysql

583.88s

19.6

7.5

71.5

8.0

Icc较gcc的优势

13.9%

-

-

-

-

 

                                   表2

对于InnoDB引擎,sql-bench测试结果显示整体上icc编译的mysql在执行时间上较gcc编译的mysql没有优势,相反还有劣势。但分析测试过程中的各种SQL,发现基于InnoDB表primary key的更新,查找操作icc编译的mysql较gcc编译的mysql还是有优势的。但是对于基于InnoDB辅助索引的查找和更新,icc编译的mysql性能不如gcc编译的mysql。这应该和InnoDB数据存储方式聚簇索引相关,基于primary key的操作直接可以定位需要的数据;但是基于辅助索引的操作,则需要辅助索引和primary key两次才能定位,这中间是大量的随机读,增加IO负载。

对于MyISAM引擎,不存在上述问题,所有索引中直接存放着数据行的物理位置。从sql-bench测试结果上看,icc编译的mysql优势明显,整体在执行时间上减少了13.9%。同时从测试中每个阶段上来看,在insert,select阶段,icc较gcc分别减少13.8%,26.1%。

在对于InnoDB和MyISAM测试过程中,统计系统cpu信息和相关进程占用内存的信息。Icc编译的mysql在cpu开销上和gcc编译的mysql相差不多;内存使用上icc版mysql较gcc版要少。通过iostat观察磁盘利用率绝大部分时间里保持在5%以下,而cpu的user使用率在20%以上。尤其是在MyISAM测试过程中insert和select测试阶段,磁盘利用率大部分时间保持在3%以下。通过这些数据可以看出CPU相关的计算操作是这个测试中较主要的方面,而IO负载对测试结果影响较少。

通过这个测试,可以看出icc编译的mysql对于MyISAM引擎优化效果明显;对于InnoDB基于primary key的操作有优化效果。但是对于InnoDB基于辅助索引的操作,icc编译的mysql存在劣势。同时,在IO负载不大,CPU负载相对较大的环境中,icc可以发挥优势。

4.2 使用mysqlslap的测试结果及分析

4.2.1 使用某数据库数据,InnoDB引擎测试结果及分析

4.2.1.1 对于全脚本回放测试结果比较及分析

整个脚本中的SQL均是InnoDB引擎的。从整个脚本回放测试的结果比较来看,icc编译出的mysql并没有显现出优势,执行时间上比gcc编译出的mysql慢。


 

 

全脚本测试

执行时间

Concurrency=1

Concurrency=10

Concurrency=20

Icc编译的mysql

230.34s

736.70s

1614.49s

Gcc编译的mysql

197.34s

623.70s

1334.76s

Icc较gcc的优势

-16.7%

-18.1%

-21.0%

 

表3

全脚本测试

Concurrency=1

Concurrency=10

Concurrency=20

Cpu%

Mem%

Cpu%

Mem%

Cpu%

Mem%

us

sy

Id

Us

sy

Id

us

sy

id

Icc-mysql

9.9

2.0

71.9

7.7

61.7

9.0

25.3

7.5

66.4

17.2

15.1

7.5

Gcc-mysql

10.1

1.2

72.6

10.7

60.6

3.1

30.3

11.3

80.1

7.2

10.6

11.5

表4

表4是icc编译的mysql和gcc编译的mysql在测试过程中资源使用情况的对比。从表中数据可以看出,icc编译的mysql在cpu,内存开销上较gcc编译的mysql要小。同时需要注意的是在cpu花在系统kernel内的时间上,icc编译的mysql明显多于gcc编译的mysql怀疑底层系统由gcc编译和上层icc编译的应用程序配合有问题。在全脚本测试的过程中,通过iostat观察IO负载情况,发现磁盘利用率大部分时间保持在50%以上,一部分时间会在90%以上。说明这种情况下,IO负载是比较大的。

4.2.1.2 特定的3个SQL测试结果及分析

在做完整个全脚本测试比较之后,我分析了脚本中包含的SQL。把它们归纳归类,然后对每一种类型的SQL进行对比测试。从每种SQL的执行计划、执行过程来分析该SQL在icc编译的mysql和gcc编译的mysql表现出来的不同执行时间。从这些信息分析icc编译的mysql性能具有优势的方面。下面对3种具有代表性的SQL的测试结果。

SQL1update tst_report_orderinfo_stat t,tst_userposmap_info t1,tst_postree_info t2 set t.posid=t2.posid where t.submitor_id=t1.ucid and t1.posid=t2.posid and t1.dataowner=1              and t2.postype=3 and t.finance_arr_date=t1.stat_date  and t2.stat_date=t1.stat_date ;

SQL1

执行时间

Concurrency=1

Concurrency=5

Concurrency=10

Icc编译的mysql

35.06s

95.05s

168.87s

Gcc编译的mysql

34.59s

100.18s

179.13s

Icc较gcc的优势

-1%

5.1%

5.7%

 

表5

将上述SQL稍微改造一下,以获得该SQL的执行计划(该执行计划和上面update操作相似):

select t.posid,t2.posid from tst_report_orderinfo_stat t,tst_userposmap_info t1,tst_postree_info t2 where t.submitor_id=t1.ucid and t1.posid=t2.posid and t1.dataowner=1 and t2.postype=3 and t.finance_arr_date=t1.stat_date  and t2.stat_date=t1.stat_date ;

获得的执行计划:

*************************** 1. row ***************************

           id: 1

  select_type: SIMPLE

        table: t1

         type: ALL

possible_keys: PRIMARY,tst_userposmap_info_stat_date_idx

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 1157224

        Extra: Using where

*************************** 2. row ***************************

           id: 1

  select_type: SIMPLE

        table: t2

         type: eq_ref

possible_keys: PRIMARY,tst_postree_info_stat_date_idx

          key: PRIMARY

      key_len: 7

          ref: xxx.t1.posid,xxx.t1.stat_date

         rows: 1

        Extra: Using where

*************************** 3. row ***************************

           id: 1

  select_type: SIMPLE

        table: t

         type: ref

possible_keys: index_report_finance_arr_date_idx,index_report_submiter_id

          key: index_report_submiter_id

      key_len: 4

          ref: xxx.t1.ucid

         rows: 16

        Extra: Using where

3 rows in set (0.00 sec)

从执行计划上可以看出,驱动表采取的全表扫描的方式取得数据,而不是通过索引。即使是Innodb也要加表锁,所以在增加concurrency后,mysql也只能串行处理这些请求。这样在第一次执行该SQL时需要从磁盘上取得相关数据,而在第一次以后再执行该SQL时,就不需要从磁盘上取得数据(数据会被缓存)。后续的SQL执行消耗的是CPU资源,从测试结果来看,icc编译的mysql在concurrency=1没有优势;但是在concurrency>1后,逐渐显现出优势,并且优势随着concurrency增加而增加。可以看出icc编译出的mysql在CPU运算方面的优势。

SQL2select blacklist_id, company_name from td_blacklist where company_name like '%xxx%' and del_flag= 0;


 

 

SQL2

执行时间

Concurrency=10

Concurrency=50

Concurrency=100

Icc编译的mysql

0.228s

0.265s

0.337s

Gcc编译的mysql

0.227s

0.287s

0.365s

Icc较gcc的提升

-0.4%

8%

8%

 

表6

本SQL的执行计划为:

*************************** 1. row ***************************

           id: 1

  select_type: SIMPLE

        table: td_blacklist

         type: ALL

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 1589

        Extra: Using where

从上述执行计划可以看出该操作使用全表扫描过滤数据,这种方式是顺序读操作,并且涉及的行数只有1589行。IO操作的压力不大,这要消耗应是CPU相关操作。从本条SQL的测试结果上看,在InnoDB引擎下,对于全表扫描的操作,icc编译的mysql较gcc编译的mysql没有劣势;在高并发下,icc编译的mysql还有优势。

SQL3update tb_cust_app tc left join (select count(distinct f.cust_id) num, follow_id from tb_follow_assign f, tb_customer c where f.cust_id=c.cust_id and c.cust_stat_1<>5 group by follow_id) tf on tc.user_id = tf.follow_id set tc.ownered_size=ifnull(tf.num,0) ;

SQL3

执行时间

Concurrency=1

Concurrency=10

Concurrency=50

Icc编译的mysql

52.30s

79.37s

557.23s

Gcc编译的mysql

50.81s

77.30s

452.49s

Icc较gcc的提升

-3%

-2.7%

-23.1%

 

表7

将上述SQL稍微改造一下,以获得该SQL的执行计划:

select tc.ownered_size,ifnull(tf.num,0) from tb_cust_app tc left join (select count(distinct f.cust_id) num, follow_id from tb_follow_assignf, tb_customer c where f.cust_id=c.cust_id and c.cust_stat_1<>5 group by follow_id) tf on tc.user_id = tf.follow_id;

相关的执行计划:

*************************** 1. row ***************************

           id: 1

  select_type: PRIMARY

        table: tc

         type: ALL

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 4386

        Extra:

*************************** 2. row ***************************

           id: 1

  select_type: PRIMARY

        table: <derived2>

         type: ALL

possible_keys: NULL

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 2655

        Extra:

*************************** 3. row ***************************

           id: 2

  select_type: DERIVED

        table: f

        type: index

possible_keys: Index_follow_assign_cust_id

        key: Index_follow_assign_follow_id

     key_len: 5

         ref: NULL

         rows: 362615

        Extra:

*************************** 4. row ***************************

           id: 2

  select_type: DERIVED

        table: c

         type: eq_ref

possible_keys: PRIMARY

          key: PRIMARY

      key_len: 4

          ref: xxx.f.cust_id

         rows: 1

        Extra: Using where

4 rows in set (3.00 sec)

从上述执行计划可以看出,table f是按照索引顺序进行全表的索引树扫描,这就会造成很多的随机读(使用的索引不是primary key)。大量的随机读会造成比较大的IO压力。从测试结果上看,icc编译出的mysql与gcc编译出的mysql相比,在执行时间存在一定的劣势。前面的全脚本测试中存在比较多的这种SQL,因此全脚本回放测试中icc编译出的mysql执行时间上比gcc编译的mysql多。从本条SQL的执行计划和测试结果上看,在InooDB引擎下,使用辅助索引,icc编译出的mysql很可能出现劣势,这和sql-bench测试结果一致。

4.2.2 使用某数据库数据,MyISAM引擎测试结果及分析

本节将数据库中一些表的存储引擎改成了MyISAM,测试使用的SQL依然来自使用的SQL。本节希望获得在MyISAM引擎基础上,基于某数据库数据,icc编译的mysql对一些典型SQL的优化效果。

SQL1(select customerd, customername, companyname, realcompanyname from tb_shifen_customerwhere urldomain like "%.cn" and status=3  and accountm>0 limit 10) union (select customerd, customername, companyname, realcompanyname from tb_shifen_customer where urldomain like "%.cn" and status in (1,4,6) and status=3  and accountm<=0 and  invalidate>=date_sub(curdate(),interval ? day)  limit 10) union (select customerd, customername, companyname, realcompanyname from  tb_shifen_customer where urldomain like "%.cn" and status in (1,4,6) and accountm>0 limit 10) union (select customerd, customername, companyname, realcompanyname from tb_shifen_customer where urldomain like "%.cn" and status=2 limit 10);

SQL1

执行时间

Concurrency=1

Concurrency=10

Concurrency=100

Icc编译的mysql

36.01s

31.20s

162.78s

Gcc编译的mysql

41.02s

40.30s

181.83s

Icc较gcc的提升

12.6%

22.0%

10.5%

 

表8

SQL2select  count(*) from tb_customer where urldomain like "%.cn";

SQL2

执行时间

Concurrency=1

Concurrency=10

Concurrency=100

Icc编译的mysql

0.014s

0.014s

0.029s

Gcc编译的mysql

0.026s

0.027s

0.035s

Icc较gcc的提升

41.2%

48.1%

17.1%

 

表9

SQL3select cust.cust_id,cust.cust_stat_1,cust.cust_stat_2,cust.cust_name, cust.cust_branch_name,cust.cust_input_type,cust.add_time,cust.cust_follow_num, cust.cust_trade_1,cust.cust_trade_2,dis.distribute_time from tb_customer cust left join tb_cust_distribute dis on cust.cust_id=dis.cust_id and dis.state=1 where cust.cust_id>0 and cust.cust_stat_1 in(8) and cust.pose_id=157 order by cust.cust_id desc limit 1170 , 15;


 

 

SQL2

执行时间

Concurrency=1

Concurrency=10

Concurrency=100

Icc编译的mysql

2.839s

3.631s

9.554s

Gcc编译的mysql

2.828s

3.740s

10.867s

Icc较gcc的提升

-0.3%

2.91%

12.1%

 

表10

上述3个类型的SQL是从测试库上执行的读操作中挑选出来的,相应的表的引擎改成了MyISAM引擎。这3个SQL涉及了扫表,索引扫描,排序等操作。从测试的结果上看,icc编译的mysql对MyISAM引擎读操作的优化效果明显。从执行时间上看(QPS)减少大概在10%-20%之间(QPS增加10%-20%)。

SQL4:update tb_cust_app tc left join (select count(distinct f.cust_id) num, follow_id from tb_follow_assignf, tb_customer c where f.cust_id=c.cust_id and c.cust_stat_1<>5 group by follow_id) tf on tc.user_id = tf.follow_id set tc.ownered_size=ifnull(tf.num,0) ;

SQL2

执行时间

Concurrency=1

Concurrency=10

Concurrency=100

Icc编译的mysql

31.279s

42.290s

342.80s

Gcc编译的mysql

33.274s

53.731s

566.374s

Icc较gcc的提升

6.0%

21.23%

39.5%

 

表11

SQL4同上一节的SQL3。在上一节InnoDB引擎下,icc编译的mysql对于此SQL在执行时间上明显慢于gcc编译的mysql,也主要是因为该SQL导致innodb全脚本测试icc编译的mysql慢于gcc编译的mysql。但是对于MyISAM引擎,从测试结果上看,icc编译的mysql明显优于gcc编译的mysql。从测试可以看出icc编译的mysql对MyISAM写操作也有优化效果,从执行时间上看(QPS)减少大概在10%-20%之间(QPS增加10%-20%)。

测试结论

从两个维度上总结测试结论:1存储引擎维度;2CPU,IO负载。

从存储引擎维度:对于MyISAM引擎,从sql-bench,mysqlslap使用某数据库数据测试结果上看,icc编译的mysql无论从读操作还是写操作都有优化效果,SQL执行时间平均减少10%-20%。对于一些比较消耗CPU的SQL(比如排序等,执行时间较长的SQL),在一定的并发下优化效果更明显。

对于InnoDB引擎,从sql-bench,mysqlslap使用全脚本测试结果上看,icc编译的mysql较gcc编译的mysql从QPS(SQL执行时间)没有优势,甚至是劣势。同时从sql-bench,全脚本中的逐个SQL分析来看:对于利用primary key或者全表扫描的SQL,icc编译的mysql有一些优化效果;对于利用辅助索引的SQL,icc编译的mysql在执行时间上比gcc编译的mysql慢。分析原因,InnoDB使用聚簇索引存储数据,利用辅助索引时,还需要走一遍primary key,这中间会有比较多的随机读等操作。

从IO,CPU负载维度:通过测试中对于资源的统计和对比,icc编译的mysql在用户态cpu开销上较gcc编译的mysql小(相差不大);在内核态cpu开销要比gcc编译的mysql多;在内存上开销上icc编译的mysql稍小。Icc对于CPU密集,IO负载不重的场景,优化效果明显;对于IO负载较重的场景,icc编译的mysql优化效果可能不明显。

综上所述:icc编译的mysql用于MyISAM引擎,较gcc编译的mysql优化效果明显。对于InnoDB引擎,使用辅助索引等操作,icc编译的mysql比gcc编译的mysql在执行时间上要慢,存在劣势。对于使用全表扫描、primary key的InnoDB操作,在低并发下,icc编译的mysql在执行时间上不会慢,在高并发下icc编译的mysql具有优势。同时业务类型是CPU密集型,而不是IO密集型,有助于发挥icc编译器的优化效果。

原文地址:https://www.cnblogs.com/ylqmf/p/2361354.html