Codeforces #258 Div.2 E Devu and Flowers

大致题意:

从n个盒子里面取出s多花。每一个盒子里面的花都同样,而且每一个盒子里面花的多数为f[i],求取法总数。

解题思路:

我们知道假设n个盒子里面花的数量无限,那么取法总数为:C(s+n-1, n-1) = C(s+n-1, s)。

能够将问题抽象成:x1+x2+...+xn = s, 当中0<=xi <= f[i]。求满足条件的解的个数。

两种方法能够解决问题:

方法一:这个问题的解能够等价于:mul = (1+x+x^2+...+x^f[1])*(1+x+x^2+...+x^f[2])*...*(1+x+x^2+...+x^f[n])中x^s项的系数。而 (1+x+x^2+...+x^f[i]) = (1-x^(1+f[i]))/(1-x),那么mul = (1-x^(1+f[1]))*(1-x^(1+f[2]))*...*(1-x^(1+f[n]))*(1-x)^(-n)。

对于 (1-x^(1+f[1]))*(1-x^(1+f[2]))*...*(1-x^(1+f[n]))这部分的系数。因为n非常小,直接暴力(2^n)枚举计算各项的系数。

对于(1-x)^(-n)的系数,(1-x)^(-n) = (1/(1-x))^n, 而1/(1-x) = 1 + x + x^2 + ... + x^n + ...,无穷级数。那么(1-x)^(-n) = (1+x+x^2+...+x^m+...)^n,要求这个式子x^s项的系数,就相当于从n个盒子(花的数量无限)里面去s朵花,求取法总数。于是(1-x)^(-n)中x^s项的系数为:C(s+n-1, n-1)。

知道这两部分的系数以后问题就迎刃而解了。

方法二:容斥原理。

设A1 = {x1 >= f[1]+1}, A2 = {x2 >= f[2]+1}, ..., An = {xn >= f[n]+1}, 全集S = (n+s-1, s)。那么问题的解集为:全集减去不符合条件的解集(某个Ai为真)。 不符合条件的解集能够用容斥原理来解决。即:

暴力枚举(2^n)Ai的状态,假设Ai为真,则s -= (f[i]+1)。那么这样的状态下,解的为题相当于从n个盒子里面取s(减去该状态下全部f[i]+1以后的值)朵花,盒子花的数目没有限制,解的个数为C(s+n-1, n-1)。

原文地址:https://www.cnblogs.com/yjbjingcha/p/6959045.html