【读书笔记】格子路径计数LatticePathEnumeration 学一半的笔记

流水账流水账这篇什么都不是

目录

吐个槽,以为逛组合学就不要看到大段复杂的公式了,结果。。。后面的哪些公式(omegavarpi)都出来了,还一堆上下标。。。(sum)下面求和范围都密密麻麻写两行。。。

方法

如果某人尝试去列出格子路径计数问题中的一些重要方法,那么会包括下面这些:

  1. 生成函数;拉格朗日反演公式 ;residue calcus
  2. 一一映射
  3. reflection principle
  4. cycle lemma
  5. 转移函数方法
  6. 核方法
  7. the path switching involution for non-intersecting lattice paths
  8. manipulation of two-rowed arrays for turn enumeration
  9. 正交多项式;连分数

10.2 Lattice paths without restrictions 无限制格子路径

2维的例子,从(a,b)到(c,d),允许(0,1)和(1,0)

[|L((a, b) ightarrow(c, d))|=left(egin{array}{c} c+d-a-b \ c-a end{array} ight) ]

n维的例子,从(mathbf{a})(mathbf{e}),每次允许一个维度+1

[|L(mathbf{a} ightarrow mathbf{e})|=left(egin{array}{c} sum_{i=1}^{d}left(e_{i}-a_{i} ight) \ e_{1}-a_{1}, e_{2}-a_{2}, ldots, e_{d}-a_{d} end{array} ight):=frac{left(sum_{i=1}^{d}left(e_{i}-a_{i} ight) ight) !}{left(e_{1}-a_{1} ight) !left(e_{2}-a_{2} ight) ! cdotsleft(e_{d}-a_{d} ight) !} ]

2维的例子,从(a,b)到(c,d),允许((0,pm1))((pm1,0)),走n个steps

[left|L_{n}((a, b) ightarrow(c, d) ;{(pm 1,0),(0,pm 1)}) ight|=left(egin{array}{c} n \ frac{n+c+d-a-b}{2} end{array} ight)left(egin{array}{c} n \ frac{n+c-d-a+b}{2} end{array} ight) ]

2维的例子,从(a,b)到(c,d),允许(0,1)和(1,0)和(1,1)

[|L((a, b) ightarrow(c, d) ;{(1,0),(0,1),(1,1)}|=sum_{k=0}^{c-a}left(egin{array}{c} c+d-a-b-k \ k, c-a-k, d-b-k end{array} ight) ]

一个带权重计数,联系了格子路径计数和整数分拆

记号(a(P))表示path (P)的水平step和x轴夹的面积的代数和

一个q-模拟

[G Fleft(L((a, b) ightarrow(c, d)) ; q^{a(.)} ight)=q^{b(c-a)}left[egin{array}{c} c+d-a-b \ c-a end{array} ight]_{q} ]

举例:从(0,0)到(2,2)有6种

是UURR,URUR,RURU,RRUU,URRU,RUUR

[q^4+q^3+q^1+q^0+q^2+q^2=left[egin{array}{c} 4 \ 2 end{array} ight]_{q}=frac{left(1-q^{4} ight)left(1-q^{3} ight)}{(1-q)left(1-q^{2} ight)}=left(1+q^{2} ight)left(1+q+q^{2} ight)=1+q+2 q^{2}+q^{3}+q^{4} ]

10.3 Linear boundaries of slope 1

Theorem 10.3.1 在y=x对角线下

[|L((a, b) ightarrow(c, d) mid x geq y)|=left(egin{array}{c} c+d-a-b \ c-a end{array} ight)-left(egin{array}{c} c+d-a-b \ c-b+1 end{array} ight) ]

其中(a geq b,cgeq d)

特例有:

ballot problem

[|L((0,0) ightarrow(c, d) mid x geq y)|=frac{c+1-d}{c+d+1}left(egin{array}{c} c+d+1 \ d end{array} ight) where cgeq d ]

卡特兰数

[|L((0,0) ightarrow(n, n) mid x geq y)|=frac{1}{n+1}left(egin{array}{c} 2 n \ n end{array} ight) ]

Theorem 10.3.3 在两条斜率1的对角线之间

[egin{array}{l} |L((a, b) ightarrow(c, d) mid x+t geq y geq x+s)| \ quad=sum_{k in mathbb{Z}}left(left(egin{array}{c} c+d-a-b \ c-a-k(t-s+2) end{array} ight)-left(egin{array}{c} c+d-a-b \ c-b-k(t-s+2)+t+1 end{array} ight) ight) end{array} ]

其中(a+tgeq bgeq a+s) and (c+tgeq dgeq c+s)

如果利用一些余数微积分的知识,我们可以改写成有sine和cosine的formula,这样容易分析渐进性质:

[egin{array}{c} |L((a, b) ightarrow(c, d) mid x+t geq y geq x+s)| \ =sumlimits_{k=1}^{lfloor(t-s+1) / 2 floor}frac{4}{t-s+2}left(2 cos frac{pi k}{t-s+2} ight)^{c+d-a-b} cdot sin left(frac{pi k(a-b+t+1)}{t-s+2} ight) cdot sin left(frac{pi k(c-d+t+1)}{t-s+2} ight) end{array} ]

10.4 Simple paths with linear boundaries of rational slope,部分一

Theorem 10.4.1 rational Catalan number

[|L((0,0) ightarrow(r, s) mid s x geq r y)|=frac{1}{r+s}left(egin{array}{c} r+s \ r,s end{array} ight) ]

这里没错。。。我找了个pdf

这个数如今被称为有理卡特兰数,

如果让(r=n,s=n+1),那么成为卡特兰数(frac{1}{n+1}left(egin{array}{c} 2n \ n end{array} ight))

Theorem 10.4.5

[|L((0,0) ightarrow(c, d) mid x geq mu y)|=frac{c-mu d+1}{c+d+1}left(egin{array}{c} c+d+1 \ d end{array} ight) ]

其中,(mu)是一个非负整数,(cgeq old{mu} d)

Lemma 10.4.6 Cycle Lemma

image-20200904153032817

Theorem 10.4.7

image-20200904153334628

10.5 Simple paths with linear boundaries with rational slope,部分二

10.6 Simple paths with a piecewise linear boundary

picewise 分段的,逐段的

像下面这样

image-20200905083413387

Theorem 10.6.1

image-20200905083922192

10.7 Simple paths with general boundaries

image-20200905084436444

Theorem 10.7.1

[left|Lleft(left(0, b_{1} ight) ightarrowleft(n, a_{n} ight) mid mathbf{a} geq mathbf{y} geq mathbf{b} ight) ight|=operatorname{det}_{1 leq i, j leq n}left(left(egin{array}{c} a_{i}-b_{j}+1 \ j-i+1 end{array} ight) ight) ]

10.8 Elementary results on Motzkin and Schröder paths

一些著名paths

image-20200905084756862

常见的就这么几种

Motzkin paths 允许(1,1),(1,-1),(1,0) 不会到x轴下方

Schröder paths 允许(1,1),(1,-1),(2,0) 不会到x轴下方

Catalan paths 允许(1,1),(1,-1) 不会到x轴下方

Dyck paths 上面的3种只要出发点和终点都在x轴上,就叫做Dyck paths

Theorem 10.8.1

Motzkin paths enumeration

[egin{array}{l} L((a, b) ightarrow(c, d) ; M mid y geq 0) mid \ quad=sum_{k=0}^{c-a}left(egin{array}{c} c-a \ k end{array} ight)left(left(egin{array}{c} c-a-k \ (c+d-k-a-b) / 2 end{array} ight)-left(egin{array}{c} c-a-k \ (c+d-k-a+b+2) / 2 end{array} ight) ight) end{array} ]

Schröder paths enumeration

[egin{array}{c} |L((a, b) ightarrow(c, d) ; S mid y geq 0)|=sum_{k=0}^{(c-a) / 2}left(egin{array}{c} c-a-k \ k end{array} ight) \ cdotleft(left(egin{array}{c} c-a-2 k \ (c+d-2 k-a-b) / 2 end{array} ight)-left(egin{array}{c} c-a-2 k \ (c+d-2 k-a+b+2) / 2 end{array} ight) ight) end{array} ]

Corollary 10.8.2

出发点和结束点都在x轴上的Motzkin paths计数

[|L((0,0) ightarrow(n, 0) ; M mid y geq 0)|=sum_{k=0}^{lfloor n / 2 floor}left(egin{array}{c} n \ 2 k end{array} ight) frac{1}{k+1}left(egin{array}{c} 2 k \ k end{array} ight) ]

出发点和结束点都在x轴上的Schröder paths计数

[|L((0,0) ightarrow(n, 0) ; S mid y geq 0)|=sum_{k=0}^{n / 2}left(egin{array}{c} n / 2+k \ 2 k end{array} ight) frac{1}{k+1}left(egin{array}{c} 2 k \ k end{array} ight) ]

10.9 A continued fraction for the weighted counting of Motzkin paths

给每个Motzkin path定义一个weight,定义为:

是所有step权重的乘积,

up-step的权重是(1),level step at height (h)的权重是(b_h),down step from height (h) to height (h-1)的权重是(lambda_h)

image-20200905123656900

Theorem 10.9.1 Motzkin path带权重

image-20200905123840899

Theorem 10.9.2 Motzkin和Schröder number的GF

image-20200905124031540

Theorem 10.9.3 Dyck path带权重

image-20200905124348653

10.10 Lattice paths and orthogonal polynomials

10.11 Motzkin paths in a strip

10.12 Further results for lattice paths in the plane

10.13 Non-intersecting lattice paths

一些定义

image-20200905201935999

有点像以前写过的routing,non-intersecting但是可以cross

Theorem 10.13.1

image-20200905202217905

其实还是这个:以前写过的routing

剩下的看不懂看不懂看不懂

10.14 Lattice paths and their turns

10.15 Multidimensional lattice paths

10.16 Multidimensional lattice paths bounded by a hyperplane

10.17 Multidimensional paths with a general boundary

10.18 The reflection principle in full generality

10.19 q-Counting of lattice paths and Rogers–Ramanujan identities

10.20 Self-avoiding walks

说这个求精确解是复杂的,求渐进的情况是很多的。给你列出了参考文献

其中推荐的standard book(标准教科书)N.MadrasandG.Slade. The self-avoiding walk. Probability and its Applications, Birkh¨auser Boston, Inc., Boston, MA, 1993.



资料来自网络

书用的是Handbook of Enumerative Combinatorics by Miklos Bona

许多组合大牛写的组合计数综述合集,几乎覆盖组合计数学的各个方面

原文地址:https://www.cnblogs.com/yhm138/p/13610626.html