卡特兰路径和q,t-enumeration 学一半的笔记

前面写了这篇q-analog的博客

这里趁热打铁 2020-08-27 18:19

下面的内容来自Handbook of Enumerative Combinatorics by Miklos Bona

的第11章 Catalan Paths and q,t-enumeration

写不完写不完看不懂看不懂 2020-09-05 20:46

卡特兰

The1st q-analogue of (C_n)

[sum_{pi in L_{n, n}^{+}} q^{operatorname{maj}(sigma(pi))}=frac{1}{[n+1]}left[egin{array}{c} 2 n \ n end{array} ight] ]

这个上篇博客写过

拿下面的图举例子,(n=3),000111,001011,001101,010011,010101

maj分别是0,3,4,2,6

[egin{aligned} q^0+q^3+q^4+q^2+q^6 &=frac{1}{1+q+q^2+q^3}cdotfrac{(1-q^6)(1-q^5)(1-q^4)}{(1-q^3)(1-q^2)(1-q^1)} \ &=frac{1}{1+q+q^2+q^3}cdot(1+q^2)(1+q^3)(1+q+q^2+q^3+q^4) \ &=frac{1}{1+q+q^2+q^3}cdot(1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9) \ &=1+q^2+q^3+q^4+q^6 end{aligned} ]

The 2nd q-analogue of (C_n) /定义(C_n(q))

image-20200827175543558

我理解没错的话,Carlitz-Riordan area 是说路径和(y=x)对角线相交区域中完整的正方形个数

这么定义(C_n(q)=sum_{pi in L_{n, n}^{+}} q^{operatorname{area}(pi)})的话,

有递归方程

[C_{n}(q)=sum_{k=1}^{n} q^{k-1} C_{k-1}(q) C_{n-k}(q), quad n geq 1 ]

这么定义的(C_n(q))还能和co-inversion联系起来

image-20200905203437855

The q-Vandermonde convolution/q-范特蒙德卷积

这么定义the basic 超几何级数

[p+1 phi_{p}left(egin{array}{ccc} a_{1}, & a_{2}, & ldots, & a_{p+1} \ & b_{1}, & ldots, & b_{p} end{array} ; q ; z ight)=sum_{k=0}^{infty} frac{left(a_{1} ight)_{k} cdotsleft(a_{p+1} ight)_{k}}{(q)_{k}left(b_{1} ight)_{k} cdotsleft(b_{p} ight)_{k}} z^{k} ]

其中((a)_k)表示升阶乘,即((a)_k=a(a+1)...(a+k-1))

Cauchy's q-binomial theorem

[{ }_{1} phi_{0}left(egin{array}{ll} a & \ - & end{array} ; q ; z ight)=sum_{k=0}^{infty} frac{(a)_{k}}{(q)_{k}} z^{k}=frac{(a z)_{infty}}{(z)_{infty}}, quad|z|<1,|q|<1 ]

where,

[(a ; q)_{infty}=(a)_{infty}=prod_{i=0}^{infty}left(1-a q^{i} ight) ]

推论11.2.11 The q-binomial theorem

[sum_{k=0}^{n} q^{left(egin{array}{c} k \ 2 end{array} ight)}left[egin{array}{l} n \ k end{array} ight] z^{k}=(-z ; q)_{n} ]

[sum_{k=0}^{infty}left[egin{array}{c} n+k \ k end{array} ight] z^{k}=frac{1}{(z ; q)_{n+1}} ]

推论 11.2.12

[sum_{k=0}^{h} q^{(n-k)(h-k)}left[egin{array}{l} n \ k end{array} ight]left[egin{array}{c} m \ h-k end{array} ight]=left[egin{array}{c} m+n \ h end{array} ight] ext { holds. } ]

推论11.2.13

[sum_{k=0}^{h} q^{(m+1) k}left[egin{array}{c} n-1+k \ k end{array} ight]left[egin{array}{c} m+h-k \ h-k end{array} ight]=left[egin{array}{c} m+n+h \ h end{array} ight] ]

The q-Vandermonde convolution

。。。这个为什么是拿超几何级数来写的。。。。

image-20200905204351100

   

剩下的空着

原文地址:https://www.cnblogs.com/yhm138/p/13573015.html