若一整系数$n$次多项式在有理数域可约,则总可以分解成次数小于$n$的两整系数多项式之积.

若一整系数$n$次多项式在有理数域可约,则总可以分解成次数小于$n$的两整系数多项式之积.


\begin{align*}
f(x)=(\frac{a_n}{b_n}x^n+\frac{a_{n-1}}{b_{n-1}}x^{n-1}+\cdots+\frac{a_1}{b_1}x+\frac{a_0}{b_0})(\frac{p_m}{q_m}x^m+\frac{p_{m-1}}{q_{m-1}}x^{m-1}+\cdots+\frac{p_1}{q_1}x+\frac{p_0}{q_0})(m,n>0)
\end{align*}

令$(a_i,b_i)=1(0\leq i\leq n)$,$(p_t,q_t)=1(0\leq t\leq m)$.令

\begin{align*}
((a_n,\cdots,a_0),(q_m,\cdots,q_0))=1
\end{align*}

\begin{align*}
((p_m,p_{m-1},\cdots,p_1,p_0),(b_n,b_{n-1},\cdots,b_1,b_0))=1
\end{align*}

\begin{align*}
f(x)=\frac{(a_n,\cdots,a_0)(p_m,\cdots,p_0)}{(b_n,\cdots,b_0)(q_m,\cdots,q_0)}(\frac{c_n}{d_n}x^n+\cdots+\frac{c_0}{d_0})(\frac{e_m}{f_m}x^m+\cdots+\frac{e_0}{f_0})
\end{align*}

我们有

\begin{align*}
(d_n,\cdots,d_0)=1,(f_m,\cdots,f_0)=1,(c_n,\cdots,c_0)=1,(e_m,\cdots,e_0)=1
\end{align*}

我们得
\begin{align*}
[d_n,\cdots,d_0][f_m,\cdots,f_0]f(x)=\frac{(a_n,\cdots,a_0)(p_m,\cdots,p_0)}{(b_n,\cdots,b_0)(q_m,\cdots,q_0)}g(x)
\end{align*}
容易证明
\begin{align*}
[d_n,\cdots,d_0](\frac{c_n}{d_n}x^n+\cdots+\frac{c_0}{d_0})
\end{align*}
是本原多项式(怎么个容易法?),且
\begin{align*}
[f_m,\cdots,f_0](\frac{e_m}{f_m}x^m+\cdots+\frac{e_0}{f_0})
\end{align*}
是本原多项式.根据高斯引理,可得$g(x)$也是本原多项式.再加上$f(x)$是整系数多项式,因此
\begin{align*}
\frac{(a_n,\cdots,a_0)(p_m,\cdots,p_0)}{(b_n,\cdots,b_0)(q_m,\cdots,q_0)}
\end{align*}
是不为$\pm 1$的整数.但是由于

\begin{align*}
((a_n,\cdots,a_0),(b_n,\cdots,b_0))=1,((p_m,\cdots,p_0),(q_m,\cdots,q_0))=1,((a_n,\cdots,a_0),(q_m,\cdots,q_0))=1,((p_m,\cdots,p_0),(b_n,\cdots,b_0))=1
\end{align*}

因此
\begin{align*}
(b_n,\cdots,b_0)=\pm 1,(q_m,\cdots,q_0)=\pm 1
\end{align*}
可见,
\begin{align*}
[d_n,\cdots,d_0][f_m,\cdots,f_0]f(x)=\pm (a_n,\cdots,a_0)(p_m,\cdots,p_0)g(x)
\end{align*}

易得
\begin{align*}
[d_n,\cdots,d_0][f_m,\cdots,f_0]|(a_n,\cdots,a_0)(p_m,\cdots,p_0)
\end{align*}
可见,我们已经把$f(x)$分解成了次数较低的整系数多项式的乘积.

注1:采用一样的方法,可以证明:一个整系数多项式可以分解成一个本原多项式与一有理系数多项式乘积,则该有理系数多项式必为整系数多项式.

 证明:设$f(x)$是整系数多项式,

\begin{align*}
f(x)=g(x)k(x)
\end{align*}
其中$g(x)$是本原多项式,$k(x)$为有理系数多项式.不妨设
\begin{align*}
k(x)=\frac{a_n}{b_n}x^n+\cdots+\frac{a_1}{b_1}x+\frac{a_0}{b_0}\mbox{(
按照降幂排列)}
\end{align*}
其中
\begin{align*}
\forall 0\leq i\leq n,(a_i,b_i)=1,a_i\neq 0
\end{align*}
我们知道,
\begin{align*}
k(x)=\frac{(a_n,\cdots,a_1,a_0)}{(b_n,\cdots,b_1,b_0)}(\frac{c_n}{d_n}x^n+\cdots+\frac{c_1}{d_1}x+\frac{c_0}{d_0})
\end{align*}
于是
\begin{align*}
[d_n,\cdots,d_1,d_0](b_n,\cdots,b_1,b_0)f(x)=(a_n,\cdots,a_1,a_0)g(x)p(x)
\end{align*}

易得$p(x)$和$g(x)$都为本原多项式,于是根据高斯引理,

\begin{align*}
g(x)p(x)
\end{align*}
也为本原多项式.于是

\begin{align*}
[d_n,\cdots,d_1,d_0](b_n,\cdots,b_1,b_0)|(a_n,\cdots,a_1,a_0)
\end{align*}

于是$k(x)$是整系数多项式.

注2:结合这个定律和树状图方法可以证明艾森斯坦判别法

原文地址:https://www.cnblogs.com/yeluqing/p/3827560.html