广义后缀自动机学习笔记

广义后缀自动机

Tags:字符串 题解

作业部落

评论地址


一、前言

广义后缀自动机实际上考得比普通后缀自动机要更多更灵活
所以这里作为一个小专题呈现,题单在后缀自动机的总题单里
为了更好掌握广义(SAM),这里提供一个高级模板题的题解

二、构建方法

普通后缀自动机处理单串的问题,多串就只能使用广义(SAM)

最方便的构建

一种方案是把字符串中间依次用从未出现过的字符连接,当作一个字符串处理,再多几个特判

    for(int i=1;i<=m;i++)
    {
        string A; cin>>A; s[++l]='#';
        for(int j=0,l=A.size();j<l;j++) s[++l]=A[j];
    }

一种方案是每插入一个串就把(lst=1),其余什么都不用改变

    for(int i=1;i<=m;i++)
    {
        lst=1; cin>>s; l=s.size();
        for(int j=0;j<l;j++) Extend(s[j]-'0');		
    }

最准确的构建

其实准确来说,广义后缀自动机是通过遍历Trie树建的,所以要先建好(Trie)
每次找到(fa[x])的节点作为(lst)往后接即可

有两种方法:(BFS)(DFS)遍历建后缀自动机
叶大佬告诉我们,(DFS)会被卡成(n^2)(BFS)不会,就像下面图片中的例子PKUSC买了个草稿本~

int Extend(int f,int c)
{
    if(ch[f][c]&&len[ch[f][c]]==len[f]+1) return ch[f][c];//?!
    int p=++node,ff=0;lst=p;
    len[p]=len[f]+1;
    while(f&&!ch[f][c]) ch[f][c]=p,f=fa[f];
    if(!f) {fa[p]=1;return p;}
    int x=ch[f][c],y=++node;
    if(len[x]==len[f]+1) {fa[p]=x;node--;return p;}
    if(len[p]==len[f]+1) ff=1;//?!
    memcpy(ch[y],ch[x],sizeof(ch[y]));
    len[y]=len[f]+1; fa[y]=fa[x]; fa[x]=fa[p]=y;
    while(f&&ch[f][c]==x) ch[f][c]=y,f=fa[f];//原因就在这
    return ff?y:p;
}

你会发现这和后缀自动机的模板有些区别诶
首先是有一个返回值,这个很好理解,返回的是如果下次要往后接的(lst),也就是方便找到(Trie)树某点在(SAM)上的位置,直接传进来就好啦
然后是有一个if(len[p]==len[f]+1) return y;的特判
前面也有一个if(ch[f][c]&&len[ch[f][c]]==len[f]+1) return ch[f][c];的特判

好,广义(SAM)的构建就讲完了
什么?!WTF?!那个特判是啥意思我还不造嘞!
别急,我们来通过例题理解它

三、例题

链接HN省队集训
题意:给(n)个字符串(s),强制在线进行(4)个操作,询问/串长(1e5)(nle20)
PFyaKH.png
题解
对于操作(1)
记录(pos[i][j])表示在第(i)次操作后(j)号串的结尾字符在(SAM)上的节点编号是(j),当在第(i)次操作在字符串(x)后插入字符时,令(lst=pos[i-1][x]),然后照常插入即可

对于操作(2)
记录(siz[i][j])表示在(i)号点,贡献给(j)号字符串的(Endpos)集合的大小,实际意义就是(i)号点代表的字符串集合在(n)个串中共出现了(sum_{j=1}^{n}siz[i][j]),其中在(j)号串中出现了(siz[i][j])次。
查询(z)串中(x)串的出现次数,那么(x)串在(y)次操作后的结尾位置是(pos[y][x]),那么(siz[pos[y][x]][z])就是答案。
这里的(siz)是在(parent)树上对子树进行求和才有上述意义,原理可见于我的另一篇博文后缀自动机,但是这里需要在线插入节点,于是我们用(lct)维护(parent)树上的(siz),每次断开或者连上父亲的时候相当是给节点到(parent)根的路径(+/-1),所以这里的(lct)只需要支持链加,不需要改变树的根所以没有(makeroot)(reverse)等操作,如果需要学习(lct),可见我的另一篇博文lct

对于操作(3)
维护一个全局变量(sum),每个节点贡献的本质不同的子串个数就是(len[x]-len[fa[x]])

对于操作(4)
(SAM)上匹配到T的结束位置的节点,(Ans=max(siz[pos][i]),i=1..n)

复杂度分析
操作(1)的总复杂度是(sum len[s_i]×log(n)×20)的,操作(2)(log(n))的,操作(3)(O(1)),操作(4)(sum len[T_i]+20)的,(log)都是(lct)的复杂度
所以总共时间复杂度是(O(sum len[s_i]*log(n)+sum len[T_i]))
空间复杂度(O(sum|S|*logn*20))左右

代码如下

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define ll long long
using namespace std;
int read()
{
    char ch=getchar();int h=0,t=1;
    while((ch>'9'||ch<'0')&&ch!='-') ch=getchar();
    if(ch=='-') t=-1,ch=getchar();
    while(ch>='0'&&ch<='9') h=h*10+ch-'0',ch=getchar();
    return h*t;
}
const int N=1e6+100;
char s[N];
int n,zx,m,ans,node=1;
int fa[N],ch[N][11],len[N],pos[N][21];
ll sum;
namespace lct
{
    #define lc t[x].ch[0]
    #define rc t[x].ch[1]
    struct LCT{int fa,ch[2],val[21],tag[21];}t[N];
    int isrt(int x) {return t[t[x].fa].ch[0]!=x&&t[t[x].fa].ch[1]!=x;}
    void Tag(int x,int y,int k) {t[x].val[y]+=k; t[x].tag[y]+=k;}
    void pushdown(int x)
    {
        for(int i=1;i<=n;i++)
        {
            if(!t[x].tag[i]) continue;
            if(lc) Tag(lc,i,t[x].tag[i]);
            if(rc) Tag(rc,i,t[x].tag[i]);
            t[x].tag[i]=0;
        }
    }
    void rotate(int x)
    {
        int y=t[x].fa,z=t[y].fa;
        int k=t[y].ch[1]==x;
        if(!isrt(y)) t[z].ch[t[z].ch[1]==y]=x; t[x].fa=z;
        t[y].ch[k]=t[x].ch[k^1];               t[t[x].ch[k^1]].fa=y;
        t[x].ch[k^1]=y;                        t[y].fa=x;       
    }
    void Push(int x){if(!isrt(x)) Push(t[x].fa);pushdown(x);}
    void splay(int x)
    {
        Push(x);
        while(!isrt(x))
        {
            int y=t[x].fa,z=t[y].fa;
            if(!isrt(y)) (t[z].ch[0]==y)^(t[y].ch[0]==x)?rotate(x):rotate(y);
            rotate(x);
        }
    }
    void Access(int x) {for(int y=0;x;y=x,x=t[x].fa) splay(x),rc=y;}
    void Add(int x,int y,int op) {for(int i=1;i<=n;i++) Tag(x,i,t[y].val[i]*op);}
    void link(int x,int y) {Push(x);t[x].fa=y;Access(y);splay(y);Add(y,x,1);}
    void cut(int x) {Access(x);splay(x);Add(lc,x,-1);lc=t[lc].fa=0;}
    int query(int x,int k) {Push(x);return t[x].val[k];}
}
int Extend(int f,int id,int c)
{
    if(ch[f][c]&&len[ch[f][c]]==len[f]+1)
    {
        int p=ch[f][c];
        lct::Access(p);lct::splay(p);lct::Tag(p,id,1);
        return p;
    }
    int p=++node; len[p]=len[f]+1; lct::t[p].val[id]=1;
    while(f&&!ch[f][c]) ch[f][c]=p,f=fa[f];
    if(!f) {fa[p]=1;lct::link(p,1);sum+=len[p]-len[fa[p]];return p;}
    int x=ch[f][c];
    if(len[f]+1==len[x]) {fa[p]=x;lct::link(p,x);sum+=len[p]-len[fa[p]];return p;}
    if(len[f]+1==len[p])//!!
    {
        lct::cut(x);lct::link(p,fa[x]);lct::link(x,p);
        memcpy(ch[p],ch[x],sizeof(ch[p]));
        fa[p]=fa[x]; fa[x]=p;
        sum-=len[p]-len[fa[p]];
        while(f&&ch[f][c]==x) ch[f][c]=p,f=fa[f];
    }
    else
    {
        int y=++node; len[y]=len[f]+1;
        lct::cut(x);lct::link(y,fa[x]);lct::link(x,y);lct::link(p,y);
        memcpy(ch[y],ch[x],sizeof(ch[y]));
        fa[y]=fa[x]; fa[x]=fa[p]=y;
        while(f&&ch[f][c]==x) ch[f][c]=y,f=fa[f];
    }
    sum+=len[p]-len[fa[p]];
    return p;
}
int calc()
{
    int x=1,res=0,i,l; scanf("%s",s+1);
    for(i=1,l=strlen(s+1);i<=l&&x;i++) x=ch[x][s[i]-'0'];
    if(i!=l+1) return 0;
    lct::Push(x);
    for(i=1;i<=n;i++) res=max(res,lct::t[x].val[i]);
    return res;
}
int main()
{
    n=read();zx=read();
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s+1); pos[0][i]=1;
        for(int p=1,l=strlen(s+1);p<=l;p++)
            pos[0][i]=Extend(pos[0][i],i,s[p]-'0');
    }
    m=read();
    for(int i=1;i<=m;i++)
    {
        int op=read(),x,y,z;
        for(int p=1;p<=n;p++) pos[i][p]=pos[i-1][p];
        if(op<=2) x=read(),y=read();
        if(op==1) y=(y^(ans*zx))%10,pos[i][x]=Extend(pos[i][x],x,y);
        else if(op==2) z=read(),printf("%d
",ans=lct::query(pos[y][x],z));
        else if(op==3) printf("%lld
",sum);
        else printf("%d
",ans=calc());
    }
    return 0;
}

Wait!
出题人和我讲这道题的时候,特别强调要特判!
但是我一直不理解,把特判if(len[f]+1==len[p]) ff=1;删了后还是过了本题
于是他给了一组(hackdata)并且在(BZOJ)加强了数据

Input
2 0
3201
01
1
2 2 0 1

Output
Right : 1
Wrong : 0

首先我们建出第一个串的(SAM)(黑边是(SAM)上的边,基佬紫边是(Parent)树上的边)
PF65OH.jpg
我们先加特判,那么继续建就会这样(姨妈红边是删去的边)
PF646e.jpg
继续加边
PF6T0A.jpg
但是如果不加这个特判,就会撒夫夫地把蓝(4)给复制一边,但是这时第二个串的(0)的结尾位置是(5),当我查询(2)串在(1)串中出现次数就会访问到(siz[pos[x][2]][1]),此时很遗憾地发现调用到了(5)节点,它没有记录蓝(4)的信息
PF6omd.jpg
这样写代码很长,有没有一种简单的写法捏?
有的,我们发现黑(5)不会再被访问到,相当于他的贡献被算到了六号点上,同时又没有点指向它所以它不会被访问到。对比上面两张图,我们发现其实就是(图1)中的黑(5)(图3)中的黑(6)是完全一样的诶!
于是直接返回黑(6)就好啦
把上述代码的(Extend)改成下面这种

int Extend(int f,int id,int c)
{
    if(ch[f][c]&&len[ch[f][c]]==len[f]+1)
    {
        int p=ch[f][c];
        lct::Access(p);lct::splay(p);lct::Tag(p,id,1);
        return p;
    }
    int p=++node,ff=0; len[p]=len[f]+1; lct::t[p].val[id]=1;
    while(f&&!ch[f][c]) ch[f][c]=p,f=fa[f];
    if(!f) {fa[p]=1;lct::link(p,1);sum+=len[p]-len[fa[p]];return p;}
    int x=ch[f][c];
    if(len[f]+1==len[x]) {fa[p]=x;lct::link(p,x);sum+=len[p]-len[fa[p]];return p;}
    if(len[f]+1==len[p]) ff=1;
    int y=++node; len[y]=len[f]+1;
    lct::cut(x);lct::link(y,fa[x]);lct::link(x,y);lct::link(p,y);
    memcpy(ch[y],ch[x],sizeof(ch[y]));
    fa[y]=fa[x]; fa[x]=fa[p]=y;
    while(f&&ch[f][c]==x) ch[f][c]=y,f=fa[f];
    sum+=len[p]-len[fa[p]];
    return ff?y:p;
}

是不是很方便?

从本质上分析这两个特判

if(ch[f][c]&&len[ch[f][c]]==len[f]+1) return ch[f][c];
我们建(SAM)是在(Trie)树上遍历建的,这句话表示访问到(Trie)树上一个点,它在(SAM)上已经被建出来了,所以不需要新建
if(len[f]+1==len[p]) ff=1;
这句特判起作用的条件是中间(f)没有被改变,也就是说存在(ch[f][c]),假设(f)表示的字符串是(A),那么插入字符(c)后产生(Ac),但是(Ac)已经存在于自动机上,所以要把它从原来的状态剥离出来,复制一遍,从后来的操作中可以发现最后我们需要的(lst)也就是(return)的点应该是复制出来的那个点

原文地址:https://www.cnblogs.com/xzyxzy/p/9246405.html