opencv访问图像像素

(1) 假设你要访问第k通道、第i行、第j列的像素。

(2) 间接访问: (通用,但效率低,可访问任意格式的图像)

  • 对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
CvScalar s;
s=cvGet2D(img,i,j); // get the (j,i) pixel value, 注意cvGet2D与cvSet2D中坐标参数的顺序与其它opencv函数坐标参数顺序恰好相反.本函数中i代表y轴,即height;j代表x轴,即weight.
printf("intensity=%f\n",s.val[0]);
s.val[0]=111;
cvSet2D(img,i,j,s); // set the (j,i) pixel value
  • 对于多通道字节型/浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
CvScalar s;
s=cvGet2D(img,i,j); // get the (i,j) pixel value
printf("B=%f, G=%f, R=%f\n",s.val[0],s.val[1],s.val[2]);
s.val[0]=111;
s.val[1]=111;
s.val[2]=111;
cvSet2D(img,i,j,s); // set the (i,j) pixel value

(3) 直接访问: (效率高,但容易出错)

  • 对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
((uchar *)(img->imageData + i*img->widthStep))[j]=111;
  • 对于多通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
  • 对于多通道浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R

(4) 基于指针的直接访问: (简单高效)

  • 对于单通道字节型图像:
IplImage* img  = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
int height     = img->height;
int width      = img->width;
int step       = img->widthStep/sizeof(uchar);
uchar* data    = (uchar *)img->imageData;
data[i*step+j] = 111;
  • 对于多通道字节型图像:
IplImage* img  = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
int height     = img->height;
int width      = img->width;
int step       = img->widthStep/sizeof(uchar);
int channels   = img->nChannels;
uchar* data    = (uchar *)img->imageData;
data[i*step+j*channels+k] = 111;
  • 对于多通道浮点型图像(假设图像数据采用4字节(32位)行对齐方式):
IplImage* img  = cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
int height     = img->height;
int width      = img->width;
int step       = img->widthStep/sizeof(float);
int channels   = img->nChannels;
float * data    = (float *)img->imageData;
data[i*step+j*channels+k] = 111;

(5) 基于 c++ wrapper 的直接访问: (更简单高效)

  • 首先定义一个 c++ wrapper ‘Image’,然后基于Image定义不同类型的图像:
template<class T> class Image
{
  private:
  IplImage* imgp;
  public:
  Image(IplImage* img=0) {imgp=img;}
  ~Image(){imgp=0;}
  void operator=(IplImage* img) {imgp=img;}
  inline T* operator[](const int rowIndx) {
    return ((T *)(imgp->imageData + rowIndx*imgp->widthStep));}
}; 
 
typedef struct{
  unsigned char b,g,r;
} RgbPixel; 
 
typedef struct{
  float b,g,r;
} RgbPixelFloat; 
 
typedef Image<RgbPixel>       RgbImage;
typedef Image<RgbPixelFloat>  RgbImageFloat;
typedef Image<unsigned char>  BwImage;
typedef Image<float>          BwImageFloat;
  • 对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
BwImage imgA(img);
imgA[i][j] = 111;
  • 对于多通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
RgbImage  imgA(img);
imgA[i][j].b = 111;
imgA[i][j].g = 111;
imgA[i][j].r = 111;
  • 对于多通道浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
RgbImageFloat imgA(img);
imgA[i][j].b = 111;
imgA[i][j].g = 111;
imgA[i][j].r = 111;
原文地址:https://www.cnblogs.com/xweiwei/p/1968780.html