[转]epoll技术

在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE    1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。

epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);
创 建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。 需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在 使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。


2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
  __uint32_t events;  /* Epoll events */
  epoll_data_t data;  /* User data variable */
};

events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里


3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等 待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有 说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

--------------------------------------------------------------------------------------------

从man手册中,得到ET和LT的具体描述如下

EPOLL事件有两种模型:
Edge Triggered (ET)
Level Triggered (LT)

假如有这样一个例子:
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
2. 这个时候从管道的另一端被写入了2KB的数据
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
4. 然后我们读取了1KB的数据
5. 调用epoll_wait(2)......

Edge Triggered 工作模式:
如 果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩 余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄 上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用 epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞 写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。
   i    基于非阻塞文件句柄
   ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。

Level Triggered 工作模式
相 反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即 使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有 EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。


然后详细解释ET, LT:

LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你 的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.

ET(edge- triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述 符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致 了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。

在 许多测试中我们会看到如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle- connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试)



另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取
while(rs)
{
  buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);
  if(buflen < 0)
  {
    // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读
    // 在这里就当作是该次事件已处理处.
    if(errno == EAGAIN)
     break;
    else
     return;
   }
   else if(buflen == 0)
   {
     // 这里表示对端的socket已正常关闭.
   }
   if(buflen == sizeof(buf)
     rs = 1;   // 需要再次读取
   else
     rs = 0;
}


还 有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然 返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回 -1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并 不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法.

ssize_t socket_send(int sockfd, const char* buffer, size_t buflen)
{
  ssize_t tmp;
  size_t total = buflen;
  const char *p = buffer;

  while(1)
  {
    tmp = send(sockfd, p, total, 0);
    if(tmp < 0)
    {
      // 当send收到信号时,可以继续写,但这里返回-1.
      if(errno == EINTR)
        return -1;

      // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,
      // 在这里做延时后再重试.
      if(errno == EAGAIN)
      {
        usleep(1000);
        continue;
      }

      return -1;
    }

    if((size_t)tmp == total)
      return buflen;

    total -= tmp;
    p += tmp;
  }

  return tmp;
}
 

epoll 有两种模式,Edge Triggered(简称ET) 和 Level Triggered(简称LT).在采用这两种模式时要注意的是,如果采用ET模式,那么仅当状态发生变化时才会通知,而采用LT模式类似于原来的 select/poll操作,只要还有没有处理的事件就会一直通知.

以代码来说明问题:
首先给出server的代码,需要说明的是每次accept的连接,加入可读集的时候采用的都是ET模式,而且接收缓冲区是5字节的,也就是每次只接收5字节的数据:

  1 #include <stdio.h>
  2 #include <stdlib.h>
  3 #include <sys/socket.h>
  4 #include <sys/types.h>
  5 #include <sys/epoll.h>
  6 #include <netinet/in.h>
  7 #include <arpa/inet.h>
  8 #include <fcntl.h>
  9 #include <unistd.h>
 10 #include <errno.h>
 11 #include <string.h>
 12 
 13 
 14 #define MAXLINE 5
 15 #define OPEN_MAX 100
 16 #define LISTENQ 20
 17 #define SERV_PORT 5000
 18 #define INFTIM 1000
 19 
 20 void setnonblocking(int sock)
 21 {
 22     int opts;
 23     opts=fcntl(sock,F_GETFL);
 24     if(opts<0)
 25     {
 26         perror("fcntl(sock,GETFL)");
 27         return;
 28     }
 29     opts = opts|O_NONBLOCK;
 30     if(fcntl(sock,F_SETFL,opts)<0)
 31     {
 32         perror("fcntl(sock,SETFL,opts)");
 33         return;
 34     }   
 35 }
 36 
 37 int main()
 38 {
 39     int i, maxi, listenfd, connfd, sockfd,epfd,nfds;
 40     ssize_t n;
 41     char line[MAXLINE];
 42     socklen_t clilen;
 43     //声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件
 44     struct epoll_event ev,events[20];
 45     //生成用于处理accept的epoll专用的文件描述符
 46     epfd=epoll_create(256);
 47     struct sockaddr_in clientaddr;
 48     struct sockaddr_in serveraddr;
 49     listenfd = socket(AF_INET, SOCK_STREAM, 0);
 50     //把socket设置为非阻塞方式
 51     //setnonblocking(listenfd);
 52     //设置与要处理的事件相关的文件描述符
 53     ev.data.fd=listenfd;
 54     //设置要处理的事件类型
 55     ev.events=EPOLLIN|EPOLLET;
 56     //ev.events=EPOLLIN;
 57     //注册epoll事件
 58     epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
 59     bzero(&serveraddr, sizeof(serveraddr));
 60     serveraddr.sin_family = AF_INET;
 61     char *local_addr="127.0.0.1";
 62     inet_aton(local_addr,&(serveraddr.sin_addr));//htons(SERV_PORT);
 63     serveraddr.sin_port=htons(SERV_PORT);
 64     bind(listenfd,(struct sockaddr *)&serveraddr, sizeof(serveraddr));
 65     listen(listenfd, LISTENQ);
 66     maxi = 0;
 67     for ( ; ; ) 
 68     {
 69         //等待epoll事件的发生
 70         nfds=epoll_wait(epfd,events,20,500);
 71         //处理所发生的所有事件     
 72         for(i=0;i<nfds;++i)
 73         {
 74             if(events[i].data.fd==listenfd)
 75             {
 76                 connfd = accept(listenfd,(struct sockaddr *)&clientaddr, &clilen);
 77                 if(connfd<0){
 78                     perror("connfd<0");
 79                     exit(1);
 80                 }
 81                 //setnonblocking(connfd);
 82                 char *str = inet_ntoa(clientaddr.sin_addr);
 83                 printf("accapt a connection from %s",str);
 84                 //设置用于读操作的文件描述符
 85                 ev.data.fd=connfd;
 86                 //设置用于注测的读操作事件
 87                 ev.events=EPOLLIN|EPOLLET;
 88                 //ev.events=EPOLLIN;
 89                 //注册ev
 90                 epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
 91             }
 92             else if(events[i].events&EPOLLIN)
 93             {
 94                 printf("EPOLLIN
");
 95                 if ( (sockfd = events[i].data.fd) < 0) 
 96                     continue;
 97                 if ( (n = read(sockfd, line, MAXLINE)) < 0) {
 98                     if (errno == ECONNRESET) {
 99                         close(sockfd);
100                         events[i].data.fd = -1;
101                     } else
102                         printf("readline error
");
103                 } else if (n == 0) {
104                     close(sockfd);
105                     events[i].data.fd = -1;
106                 }
107                 line[n] = '';
108                 printf("read %s",line); 
109                 //设置用于写操作的文件描述符
110                 ev.data.fd=sockfd;
111                 //设置用于注测的写操作事件
112                 ev.events=EPOLLOUT|EPOLLET;
113                 //修改sockfd上要处理的事件为EPOLLOUT
114                 //epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
115             }
116             else if(events[i].events&EPOLLOUT)
117             {   
118                 sockfd = events[i].data.fd;
119                 write(sockfd, line, n);
120                 //设置用于读操作的文件描述符
121                 ev.data.fd=sockfd;
122                 //设置用于注测的读操作事件
123                 ev.events=EPOLLIN|EPOLLET;
124                 //修改sockfd上要处理的事件为EPOLIN
125                 epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
126             }
127         }
128     }
129     return 0;
130 }
View Code

客户端:

 1 #include <sys/socket.h>
 2 #include <sys/types.h>
 3 #include <stdio.h>
 4 #include <stdlib.h>
 5 #include <string.h>
 6 #include <netinet/in.h>
 7 #include <arpa/inet.h>
 8 #include <unistd.h>
 9 
10 #define HELLO_WORLD_SERVER_PORT   5000
11 
12 int main()
13 {
14     int clientfd;
15     clientfd = socket(AF_INET, SOCK_STREAM,0);
16 
17     struct sockaddr_in server_addr;
18     bzero(&server_addr,sizeof(server_addr)); //把一段内存区的内容全部设置为0
19     server_addr.sin_family = AF_INET;
20     inet_aton("127.0.0.1",&( server_addr.sin_addr));
21     server_addr.sin_port = htons(HELLO_WORLD_SERVER_PORT);
22 
23     if(connect(clientfd,(struct sockaddr*)&server_addr,sizeof(struct sockaddr_in)) < 0)
24     {
25         printf("错误!
");    
26     }
27 }
View Code
原文地址:https://www.cnblogs.com/xuxu8511/p/3174186.html