《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析

第九章:关键利率久期和 VaR 分析

思维导图

一些想法

  • 在解关键方程的时候施加 (L^1) 约束也许可以得到“稀疏解”,进而减少交易成本。
  • 借鉴样条插值拟合期限结构时选择 knot 的方法选择关键期限。

有关现金流映射技术的推导

已知,

[Delta y(t) = egin{cases} Delta y(t_{first}) & t le t_{first}\ Delta y(t_{last}) & t ge t_{last}\ alpha Delta y(t_{left}) + (1-alpha) Delta y(t_{right})& ext{ else} end{cases} ]

[alpha = frac{t_{right}-t}{t_{right} - t_{left}} ]

[t_{left} < t < t_{right} ]

求解 (CF_{left})(CF_{right})(CF_0) 使得:

[egin{aligned} P &= frac{CF_t}{e^{y(t)t}} \ &= frac{CF_{left}}{e^{y(t_{left})t_{left}}} + frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0 end{aligned} ag{1} ]

要求关键利率久期不变,那么:

[egin{aligned} frac{1}{P} frac{partial P}{partial y(t_{left})} &=frac{1}{P} frac{partial P}{partial y(t)} frac{partial y(t)}{partial y(t_{left})}\ &approxfrac{1}{P} frac{partial P}{partial y(t)} frac{Delta y(t)}{Delta y(t_{left})}\ &approx-frac{1}{P} frac{CF_t imes t}{e^{y(t)t}} alpha\ &=-talpha \ frac{1}{P} frac{partial P}{partial y(t_{left})} &=frac{1}{P} frac{partial left(frac{CF_{left}}{e^{y(t_{left})t_{left}}} + frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0 ight) }{partial y(t_{left})}\ &=-frac{1}{P} frac{CF_{left} imes t_{left}}{e^{y(t_{left})t_{left}}} end{aligned} ]

解出

[CF_{left} = frac{t alpha P e^{y(t_{left})t_{left}}}{t_{left}} ag{2} ]

同理解出

[CF_{right} = frac{t (1-alpha) P e^{y(t_{right})t_{right}}}{t_{right}} ag{3} ]

(2)和(3)代入(1)解出

[CF_0 = P imes frac{(t-t_{left})(t-t_{right})}{t_{left} imes t_{right}} ]

原文地址:https://www.cnblogs.com/xuruilong100/p/12244274.html