Java中的锁分类与使用

1.1 乐观锁/悲观锁

  乐观锁与悲观锁并不是特指某两种类型的锁,是人们定义出来的概念或思想,主要是指看待并发同步的角度

  乐观锁:顾名思义,(个人理解,读多写少), 就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。

                 乐观锁适用于多读的应用类型,这样可以提高吞吐量. 在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS(Compare and Swap 比较并交换)实现的。

  悲观锁:总是假设最坏的情况,(个人理解,读少写多), 每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。比如Java里面的同步原语synchronized关键字的实现就是悲观锁

  悲观锁适合写操作非常多的场景,乐观锁适合读操作非常多的场景,不加锁会带来大量的性能提升。

  悲观锁在Java中的使用,就是利用各种锁。

  乐观锁在Java中的使用,是无锁编程,常常采用的是CAS算法,典型的例子就是原子类,通过CAS自旋实现原子操作的更新。

1.1.1 乐观锁

  乐观锁总是认为不存在并发问题,每次去取数据的时候,总认为不会有其他线程对数据进行修改,因此不会上锁。但是在更新时会判断其他线程在这之前有没有对数据进行修改,一般会使用“数据版本机制”或“CAS操作”来实现。

(1) 数据版本机制

  实现数据版本一般有两种,第一种是使用版本号,第二种是使用时间戳。以版本号方式为例。

  版本号方式:一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,

      若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。
      核心SQL代码:

 update table set xxx=#{xxx}, version=version+1 where id=#{id} and version=#{version};
(2) CAS操作

  CAS(Compare and Swap 比较并交换),当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。

  CAS操作中包含三个操作数——需要读写的内存位置(V)、进行比较的预期原值(A)和拟写入的新值(B)。如果内存位置V的值与预期原值A相匹配,那么处理器会自动将该位置值更新为新值B,否则处理器不做任何操作。

1.2 悲观锁

  悲观锁认为对于同一个数据的并发操作,一定会发生修改的,哪怕没有修改,也会认为修改。因此对于同一份数据的并发操作,悲观锁采取加锁的形式。悲观的认为,不加锁并发操作一定会出问题。

  在对任意记录进行修改前,先尝试为该记录加上排他锁(exclusive locking)。

  如果加锁失败,说明该记录正在被修改,那么当前查询可能要等待或者抛出异常。具体响应方式由开发者根据实际需要决定。

  如果成功加锁,那么就可以对记录做修改,事务完成后就会解锁了。

  期间如果有其他对该记录做修改或加排他锁的操作,都会等待我们解锁或直接抛出异常。

1.2 独享锁/共享锁

  独享锁是指该锁一次只能被一个线程所持有。

  共享锁是指该锁可被多个线程所持有。

  对于Java ReentrantLock而言,其是独享锁。但是对于Lock的另一个实现类ReadWriteLock,其读锁是共享锁,其写锁是独享锁

  读锁的共享锁可保证并发读是非常高效的,读写,写读,写写的过程是互斥的。

  独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。

  对于Synchronized而言,当然是独享锁

1.3 互斥锁/读写锁

  上面讲的独享锁/共享锁就是一种广义的说法,互斥锁/读写锁就是具体的实现。

  互斥锁在Java中的具体实现就是ReentrantLock。

  读写锁在Java中的具体实现就是ReadWriteLock。

1.4 可重入锁

  可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。说的有点抽象,下面会有一个代码的示例。

  对于Java ReetrantLock而言,从名字就可以看出是一个重入锁,其名字是Re entrant Lock 重新进入锁。

  对于Synchronized而言,也是一个可重入锁。可重入锁的一个好处是可一定程度避免死锁。

复制代码

1 synchronized void setA() throws Exception{
2   Thread.sleep(1000);
3   setB();
4 }
5 
6 synchronized void setB() throws Exception{
7   Thread.sleep(1000);
8 }

复制代码

  上面的代码就是一个可重入锁的一个特点。如果不是可重入锁的话,setB可能不会被当前线程执行,可能造成死锁。

1.5 公平锁/非公平锁

  公平锁是指多个线程按照申请锁的顺序来获取锁

  非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。有可能,会造成优先级反转或者饥饿现象。

  对于Java ReetrantLock而言,通过构造函数指定该锁是否是公平锁,默认是非公平锁。非公平锁的优点在于吞吐量比公平锁大。

  对于Synchronized而言,也是一种非公平锁。由于其并不像ReentrantLock是通过AQS的来实现线程调度,所以并没有任何办法使其变成公平锁。

1.6 分段锁

  分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作。

  我们以ConcurrentHashMap来说一下分段锁的含义以及设计思想,ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap(JDK7和JDK8中HashMap的实现)的结构,

      即内部拥有一个Entry数组,数组中的每个元素又是一个链表;同时又是一个ReentrantLock(Segment继承了ReentrantLock)。

  当需要put元素的时候,并不是对整个hashmap进行加锁,而是先通过hashcode来知道他要放在哪一个分段中,然后对这个分段进行加锁,所以当多线程put的时候,只要不是放在一个分段中,就实现了真正的并行的插入。

  但是,在统计size的时候,可就是获取hashmap全局信息的时候,就需要获取所有的分段锁才能统计。

  分段锁的设计目的是细化锁的粒度,当操作不需要更新整个数组的时候,就仅仅针对数组中的一项进行加锁操作

1.7 偏向锁/轻量级锁/重量级锁

  这三种锁是指锁的状态,并且是针对Synchronized。在Java 5通过引入锁升级的机制来实现高效Synchronized。这三种锁的状态是通过对象监视器在对象头中的字段来表明的。

  偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁。降低获取锁的代价。

  轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。

  重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让他申请的线程进入阻塞,性能降低。

1.8 自旋锁

  在Java中,自旋锁是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU。

     (自旋锁原理非常简单,如果持有锁的线程能在很短时间内释放锁资源,那么那些等待竞争锁的线程就不需要做内核态和用户态之间的切换进入阻塞挂起状态,它们只需要等一等(自旋),

     等持有锁的线程释放锁后即可立即获取锁,这样就避免用户线程和内核的切换的消耗)

     JVM对于自旋周期的选择,jdk1.5这个限度是一定的写死的,在1.6引入了适应性自旋锁,适应性自旋锁意味着自旋的时间不在是固定的了,而是由前一次在同一个锁上的自旋时间以及锁的拥有者的状态来决定,

     基本认为一个线程上下文切换的时间是最佳的一个时间,同时JVM还针对当前CPU的负荷情况做了较多的优化


2.锁的使用

2.1 预备知识

2.1.1 AQS

  AbstractQueuedSynchronized 抽象队列式的同步器,AQS定义了一套多线程访问共享资源的同步器框架,许多同步类实现都依赖于它,如常用的ReentrantLock/Semaphore/CountDownLatch…

  AQS维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。

  state的访问方式有三种:

1 getState()
2 setState()
3 compareAndSetState()

AQS定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如ReentrantLock)和Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)。

  不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

1 isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
2 tryAquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
3 tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
4 tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
5 tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。

  以ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其他线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多少次,这样才能保证state是能回到零态的。

  再以CountDownLatch为例,任务分为N个子线程去执行,state为初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会await()函数返回,继续后余动作。

  一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。

2.1.2 CAS

  CAS(Compare and Swap 比较并交换)是乐观锁技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其他线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。

  CAS操作中包含三个操作数——需要读写的内存位置(V)、进行比较的预期原值(A)和拟写入的新值(B)。如果内存位置V的值与预期原值A相匹配,那么处理器会自动将该位置值更新为新值B,否则处理器不做任何操作。无论哪种情况,它都会在CAS指令之前返回该位置的值(在CAS的一些特殊情况下将仅返回CAS是否成功,而不提取当前值)。CAS有效地说明了“我认为位置V应该包含值A;如果包含该值,则将B放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可”。这其实和乐观锁的冲突检查+数据更新的原理是一样的。

JAVA对CAS的支持:

在JDK1.5中新增java.util.concurrent包就是建立在CAS之上的。相对于synchronized这种阻塞算法,CAS是非阻塞算法的一种常见实现。所以java.util.concurrent包中的AtomicInteger为例,看一下在不使用锁的情况下是如何保证线程安全的。主要理解getAndIncrement方法,该方法的作用相当于++i操作。

复制代码

  public class AtomicInteger extends Number implements java.io.Serializable{
    private volatile int value;
    public final int get(){
      return value;
    }
  
    public final int getAndIncrement(){
      for (;;){
        int current = get();
        int next = current + 1;
        if (compareAndSet(current, next))
           return current;
         }
     }
  
     public final boolean compareAndSet(int expect, int update){
       return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
     }
   }

复制代码

后续补充…

原文地址:https://www.cnblogs.com/xumBlog/p/11978997.html