Android Init进程分析

之前在看android启动过程总是带着完成工作任务的目的去分析代码,但是对于一些代码的细节并不是很清楚,在这里就分析一下Init进程的执行过程。

Init进程是android系统起来之后启动的第一个进程,对于研究android系统的启动过程很重要。

直接根据代码来分析整个进程的执行过程。

int main(int argc, char **argv)
{
    int fd_count = 0;
    struct pollfd ufds[4];//存放pollfd
    char *tmpdev;
    char* debuggable;
    char tmp[32];
    int property_set_fd_init = 0;
    int signal_fd_init = 0;
    int keychord_fd_init = 0;

    if (!strcmp(basename(argv[0]), "ueventd"))
        return ueventd_main(argc, argv);//ueventd是init的软链接,执行这个进程的时候相当于执行init进程,然后根据进程名进入相应的执行流程

    /* clear the umask */
    umask(0);

        /* Get the basic filesystem setup we need put
         * together in the initramdisk on / and then we'll
         * let the rc file figure out the rest.
         */
    mkdir("/dev", 0755);//创建一些必要的目录并分配权限
    mkdir("/proc", 0755);
    mkdir("/sys", 0755);

    mount("tmpfs", "/dev", "tmpfs", 0, "mode=0755");
    mkdir("/dev/pts", 0755);
    mkdir("/dev/socket", 0755);
    mount("devpts", "/dev/pts", "devpts", 0, NULL);
    mount("proc", "/proc", "proc", 0, NULL);
    mount("sysfs", "/sys", "sysfs", 0, NULL);

        /* We must have some place other than / to create the
         * device nodes for kmsg and null, otherwise we won't
         * be able to remount / read-only later on.
         * Now that tmpfs is mounted on /dev, we can actually
         * talk to the outside world.
         */

以上部分不是比较浅显,不是分析的重点

    open_devnull_stdio();//重定向标准输入,输入,错误到/dev/__null__(dup2复制文件句柄,0,1,2分别代表标准输入 输出 错误)
    log_init();//设置log信息输出设备/dev/__kmsg__,unlink之后其他进程无法访问
    
    INFO("reading config file\n");
    init_parse_config_file("/init.rc");//分析配置文件

    /* pull the kernel commandline and ramdisk properties file in */
    import_kernel_cmdline(0);

这里导入相应的处理函数,分析执行过程

static void import_kernel_cmdline(int in_qemu)
{
    char cmdline[1024];
    char *ptr;
    int fd;

    fd = open("/proc/cmdline", O_RDONLY);
    if (fd >= 0) {
        int n = read(fd, cmdline, 1023);
        if (n < 0) n = 0;

        /* get rid of trailing newline, it happens */
        if (n > 0 && cmdline[n-1] == '\n') n--;
//读取/proc/cmdline中的信息,存放在cmdline字符数组并进行处理
        cmdline[n] = 0;
        close(fd);
    } else {
        cmdline[0] = 0;
    }

    ptr = cmdline;
    while (ptr && *ptr) {
        char *x = strchr(ptr, ' ');
        if (x != 0) *x++ = 0;
        import_kernel_nv(ptr, in_qemu);//根据' '间断符逐行分析文本
        ptr = x;
    }

        /* don't expose the raw commandline to nonpriv processes */
    chmod("/proc/cmdline", 0440);
}

static void import_kernel_nv(char *name, int in_qemu)
{
    char *value = strchr(name, '=');

    if (value == 0) {
	if (!strcmp(name, "calibration"))
	    calibration = 1;//表示要校准还是什么?
	return;
    }
    *value++ = 0;
    if (*name == 0) return;

    if (!in_qemu)
    {
        /* on a real device, white-list the kernel options */
        if (!strcmp(name,"qemu")) {
            strlcpy(qemu, value, sizeof(qemu));
        } else if (!strcmp(name,"androidboot.console")) {
            strlcpy(console, value, sizeof(console));
        } else if (!strcmp(name,"androidboot.mode")) {
            strlcpy(bootmode, value, sizeof(bootmode));//启动模式
        } else if (!strcmp(name,"androidboot.serialno")) {
            strlcpy(serialno, value, sizeof(serialno));
        } else if (!strcmp(name,"androidboot.baseband")) {
            strlcpy(baseband, value, sizeof(baseband));//基带
        } else if (!strcmp(name,"androidboot.carrier")) {
            strlcpy(carrier, value, sizeof(carrier));
        } else if (!strcmp(name,"androidboot.bootloader")) {
            strlcpy(bootloader, value, sizeof(bootloader));
        } else if (!strcmp(name,"androidboot.hardware")) {
            strlcpy(hardware, value, sizeof(hardware));
        }//将以上设备信息存放在定义的字符数组中
    } else {
        /* in the emulator, export any kernel option with the
         * ro.kernel. prefix */
        char  buff[32];
        int   len = snprintf( buff, sizeof(buff), "ro.kernel.%s", name );
        if (len < (int)sizeof(buff)) {
            property_set( buff, value );
        }
    }
}

    get_hardware_name(hardware, &revision);
    snprintf(tmp, sizeof(tmp), "/init.%s.rc", hardware);
    init_parse_config_file(tmp);//分析相应硬件版本的rc文件

init.rc文件有自己相应的语法,分析rc文件也是根据对应的语法来分析,这里引入一片简单介绍init.rc语法的文章

Android init.rc脚本解析

int init_parse_config_file(const char *fn)
{
    char *data;
    data = read_file(fn, 0);//这里通过read_file函数将fn文件中的数据全部读取到字符数组中,malloc分配空间
    if (!data) return -1;
    //这里开始真正分析脚本中的命令
    parse_config(fn, data);
    DUMP();
    return 0;
}

static void parse_config(const char *fn, char *s)
{
    struct parse_state state;
    char *args[INIT_PARSER_MAXARGS];//允许解析出来的命令行最多有64个参数
    int nargs;

    nargs = 0;
    state.filename = fn;
    state.line = 1;
    state.ptr = s;
    state.nexttoken = 0;
    state.parse_line = parse_line_no_op;
    for (;;) {
        switch (next_token(&state)) {//通过next_token函数来寻找字符数组中的关键标记
        //这里面省略了一些字符的处理(如‘\r’, '\t', '"', ' '等),只针对有效字符进行处理('\0', '\n'等)
        //#define T_EOF 0    #define T_TEXT 1    #define T_NEWLINE 2
        case T_EOF:
            state.parse_line(&state, 0, 0);
            return;
        case T_NEWLINE:
            if (nargs) {
                int kw = lookup_keyword(args[0]);//这里将分析第一个参数所代表的关键字
                //根据字符匹配返回已定义好的宏定义
                if (kw_is(kw, SECTION)) {//当关键字是on或service
                    state.parse_line(&state, 0, 0); 
                    parse_new_section(&state, kw, nargs, args);//对state.parse_line进行赋值
                    //这里表示的是一段新的SECTION,此时会在action或这service双向链表中加入新的结点
                    //首先是将action或者service加入到相应的链表尾部
                } else {
                    state.parse_line(&state, nargs, args);
                    //如果是command,将这些cmamand加入到所属的action链表的尾部
                }
                nargs = 0;
            }
            break;
        case T_TEXT:
            if (nargs < INIT_PARSER_MAXARGS) {
                args[nargs++] = state.text;
            }
            break;
        }
    }
}

宏定义如下:

enum {
    K_UNKNOWN,
#endif
    KEYWORD(capability,  OPTION,  0, 0)
    KEYWORD(chdir,       COMMAND, 1, do_chdir)
    KEYWORD(chroot,      COMMAND, 1, do_chroot)
    KEYWORD(class,       OPTION,  0, 0)
    KEYWORD(class_start, COMMAND, 1, do_class_start)
    KEYWORD(class_stop,  COMMAND, 1, do_class_stop)
    KEYWORD(class_reset, COMMAND, 1, do_class_reset)
    KEYWORD(console,     OPTION,  0, 0)
    KEYWORD(critical,    OPTION,  0, 0)
    KEYWORD(disabled,    OPTION,  0, 0)
    KEYWORD(domainname,  COMMAND, 1, do_domainname)
    KEYWORD(exec,        COMMAND, 1, do_exec)
    KEYWORD(export,      COMMAND, 2, do_export)
    KEYWORD(group,       OPTION,  0, 0)
    KEYWORD(hostname,    COMMAND, 1, do_hostname)
    KEYWORD(ifup,        COMMAND, 1, do_ifup)
    KEYWORD(insmod,      COMMAND, 1, do_insmod)
    KEYWORD(import,      SECTION, 1, 0)
    KEYWORD(keycodes,    OPTION,  0, 0)
    KEYWORD(mkdir,       COMMAND, 1, do_mkdir)
    KEYWORD(mount,       COMMAND, 3, do_mount)
    KEYWORD(on,          SECTION, 0, 0)
    KEYWORD(oneshot,     OPTION,  0, 0)
    KEYWORD(onrestart,   OPTION,  0, 0)
    KEYWORD(restart,     COMMAND, 1, do_restart)
    KEYWORD(rm,          COMMAND, 1, do_rm)
    KEYWORD(rmdir,       COMMAND, 1, do_rmdir)
    KEYWORD(service,     SECTION, 0, 0)
    KEYWORD(setenv,      OPTION,  2, 0)
    KEYWORD(setkey,      COMMAND, 0, do_setkey)
    KEYWORD(setprop,     COMMAND, 2, do_setprop)
    KEYWORD(setrlimit,   COMMAND, 3, do_setrlimit)
    KEYWORD(socket,      OPTION,  0, 0)
    KEYWORD(start,       COMMAND, 1, do_start)
    KEYWORD(stop,        COMMAND, 1, do_stop)
    KEYWORD(trigger,     COMMAND, 1, do_trigger)
    KEYWORD(symlink,     COMMAND, 1, do_symlink)
    KEYWORD(sysclktz,    COMMAND, 1, do_sysclktz)
    KEYWORD(user,        OPTION,  0, 0)
    KEYWORD(wait,        COMMAND, 1, do_wait)
    KEYWORD(write,       COMMAND, 2, do_write)
    KEYWORD(copy,        COMMAND, 2, do_copy)
    KEYWORD(chown,       COMMAND, 2, do_chown)
    KEYWORD(chmod,       COMMAND, 2, do_chmod)
    KEYWORD(loglevel,    COMMAND, 1, do_loglevel)
    KEYWORD(load_persist_props,    COMMAND, 0, do_load_persist_props)
    KEYWORD(ioprio,      OPTION,  0, 0)
#ifdef __MAKE_KEYWORD_ENUM__
    KEYWORD_COUNT,
};

这里还涉及到一些结构体Action及对应的Command,Service也是如此

struct command
{
        /* list of commands in an action */
    struct listnode clist;

    int (*func)(int nargs, char **args);
    int nargs;
    char *args[1];
};
    
struct action {
        /* node in list of all actions */
    struct listnode alist;
        /* node in the queue of pending actions */
    struct listnode qlist;
        /* node in list of actions for a trigger */
    struct listnode tlist;

    unsigned hash;
    const char *name;
    
    struct listnode commands;
    struct command *current;
};
    
    action_for_each_trigger("early-init",action_add_queue_tail);
    queue_builtin_action(wait_for_coldboot_done_action, "wait_for_coldboot_done");
  

以上两个函数功能其实是一样的,action_for_each_trigger是将action放到即将执行的链表中(确保了执行顺序),而queue_builtin_action是将action放到整体的链表中

正常的执行顺序是early-init——>init——>early-fs——>fs——>early-boot——>boot

    queue_builtin_action(property_init_action, "property_init");
    queue_builtin_action(keychord_init_action, "keychord_init");
    queue_builtin_action(console_init_action, "console_init");
    queue_builtin_action(set_init_properties_action, "set_init_properties");

        /* execute all the boot actions to get us started */
    action_for_each_trigger("init", action_add_queue_tail);
    action_for_each_trigger("early-fs", action_add_queue_tail);
    action_for_each_trigger("fs", action_add_queue_tail);
    action_for_each_trigger("post-fs", action_add_queue_tail);

    queue_builtin_action(property_service_init_action, "property_service_init");
    queue_builtin_action(signal_init_action, "signal_init");
    queue_builtin_action(check_startup_action, "check_startup");

    /* execute all the boot actions to get us started */
    action_for_each_trigger("early-boot", action_add_queue_tail);
    action_for_each_trigger("boot", action_add_queue_tail);

        /* run all property triggers based on current state of the properties */
    queue_builtin_action(queue_property_triggers_action, "queue_propety_triggers");


#if BOOTCHART
    queue_builtin_action(bootchart_init_action, "bootchart_init");
#endif

以下又是分析的重点

    for(;;) {
        int nr, i, timeout = -1;

        execute_one_command();//从链表中取出结点相应执行然后remove
        //分析过这个函数,在这里还有个疑问,该函数都是从action队列中去结点执行,但是系统的service是怎么执行的
        //难道service链表不可能只注册不执行
        //这里注意on boot section中最后一个command(class_start default),最终调用do_class_start


int do_class_start(int nargs, char **args)
{
        /* Starting a class does not start services
         * which are explicitly disabled.  They must
         * be started individually.
         */
    service_for_each_class(args[1], service_start_if_not_disabled);
    return 0;
}

执行service_list中的结点

void service_for_each_class(const char *classname,
                            void (*func)(struct service *svc))
{
    struct listnode *node;
    struct service *svc;
    list_for_each(node, &service_list) {
        svc = node_to_item(node, struct service, slist);
        if (!strcmp(svc->classname, classname)) {
            func(svc);
        }
    }
}

这里就将链表中的所有结点都执行完毕,over

#define list_for_each(node, list) \
    for (node = (list)->next; node != (list); node = node->next)
        restart_processes();//判断是否有进程需要重启

        if (!property_set_fd_init && get_property_set_fd() > 0) {//系统属性
            ufds[fd_count].fd = get_property_set_fd();
            ufds[fd_count].events = POLLIN;
            ufds[fd_count].revents = 0;
            fd_count++;
            property_set_fd_init = 1;
        }
        if (!signal_fd_init && get_signal_fd() > 0) {//进程间通信
            ufds[fd_count].fd = get_signal_fd();
            ufds[fd_count].events = POLLIN;
            ufds[fd_count].revents = 0;
            fd_count++;
            signal_fd_init = 1;
        }
        if (!keychord_fd_init && get_keychord_fd() > 0) {//组合键检测
            ufds[fd_count].fd = get_keychord_fd();
            ufds[fd_count].events = POLLIN;
            ufds[fd_count].revents = 0;
            fd_count++;
            keychord_fd_init = 1;
        }

        if (process_needs_restart) {
            timeout = (process_needs_restart - gettime()) * 1000;
            if (timeout < 0)
                timeout = 0;
        }

        if (!action_queue_empty() || cur_action)
            timeout = 0;

#if BOOTCHART
        if (bootchart_count > 0) {
            if (timeout < 0 || timeout > BOOTCHART_POLLING_MS)
                timeout = BOOTCHART_POLLING_MS;
            if (bootchart_step() < 0 || --bootchart_count == 0) {
                bootchart_finish();
                bootchart_count = 0;
            }
        }
#endif

        nr = poll(ufds, fd_count, timeout);
        if (nr <= 0)
            continue;

        for (i = 0; i < fd_count; i++) {
            if (ufds[i].revents == POLLIN) {
                if (ufds[i].fd == get_property_set_fd())
                    handle_property_set_fd();
                else if (ufds[i].fd == get_keychord_fd())
                    handle_keychord();
                else if (ufds[i].fd == get_signal_fd())
                    handle_signal();
            }
        }
    }

    return 0;
}



原文地址:https://www.cnblogs.com/xinyuyuanm/p/2998586.html