S5PV210(TQ210)学习笔记——按键驱动程序

经过前面的配置,S5PV210开发已经可以成功进入Linux控制台了,那么,有了这个环境就可以开始学习Linux驱动的编写和测试了。学习Linux设备驱动,通常是从字符设备驱动开始。由于linux驱动开发具有比较系统的体系结构,我很难在一篇文章中阐述其开发思路,为了简单起见,从本文开始,自行编写的驱动将直接附上代码,对开发过程中感触比较深的地方稍作陈述。

我写的第一个驱动程序是Led的,但是感觉没有必要发出来了,S5PV210(TQ210)的按键驱动程序源码,仅供参考:

#include <linux/types.h>
#include <linux/module.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/sched.h> 
#include <linux/wait.h>
#include <linux/uaccess.h>

static dev_t devno;
static struct cdev cdev;
static struct class* buttons_class;
static struct device* buttons_device;

static wait_queue_head_t button_waitq;

static volatile int pressed = 0;
static unsigned char key_val;

struct key_desc{
	unsigned int  pin;
	unsigned char value;
};

static struct key_desc key_descs[8] = {
	[0] = {
		.pin = S5PV210_GPH0(0),
		.value = 0x00,
	},

	[1] = {
		.pin = S5PV210_GPH0(1),
		.value = 0x01,
	},

	[2] = {
		.pin = S5PV210_GPH0(2),
		.value = 0x02,
	},

	[3] = {
		.pin = S5PV210_GPH0(3),
		.value = 0x03,
	},

	[4] = {
		.pin = S5PV210_GPH0(4),
		.value = 0x04,
	},

	[5] = {
		.pin = S5PV210_GPH0(5),
		.value = 0x05,
	},

	[6] = {
		.pin = S5PV210_GPH2(6),
		.value = 0x06,
	},

	[7] = {
		.pin = S5PV210_GPH2(7),
		.value = 0x07,
	},
};

static irqreturn_t buttons_irq(int irq, void *dev_id){
	volatile struct key_desc *key = (volatile struct key_desc *)dev_id;

	if(gpio_get_value(key->pin)){
		key_val = key->value|0x80;
	}
	else{
		key_val = key->value;
	}

	pressed = 1;
	wake_up_interruptible(&button_waitq);

	return IRQ_RETVAL(IRQ_HANDLED);
}

static int buttons_open(struct inode *inode, struct file *file){
	int ret;

	ret = request_irq(IRQ_EINT(0),   buttons_irq, IRQ_TYPE_EDGE_BOTH, "key1", &key_descs[0]);
	if(ret)
		return ret;
	ret = request_irq(IRQ_EINT(1),   buttons_irq, IRQ_TYPE_EDGE_BOTH, "key2", &key_descs[1]);
	if(ret)
		return ret;
 	ret = request_irq(IRQ_EINT(2),   buttons_irq, IRQ_TYPE_EDGE_BOTH, "key3", &key_descs[2]);
	if(ret)
		return ret;
 	ret = request_irq(IRQ_EINT(3),   buttons_irq, IRQ_TYPE_EDGE_BOTH, "key4", &key_descs[3]);
	if(ret)
		return ret;
	ret = request_irq(IRQ_EINT(4),   buttons_irq, IRQ_TYPE_EDGE_BOTH, "key5", &key_descs[4]);
	if(ret)
		return ret;
	ret = request_irq(IRQ_EINT(5),   buttons_irq, IRQ_TYPE_EDGE_BOTH, "key6", &key_descs[5]);
	if(ret)
		return ret;
	ret = request_irq(IRQ_EINT(22),  buttons_irq, IRQ_TYPE_EDGE_BOTH, "key7", &key_descs[6]);
	if(ret)
		return ret;
	ret = request_irq(IRQ_EINT(23),  buttons_irq, IRQ_TYPE_EDGE_BOTH, "key8", &key_descs[7]);
	if(ret)
		return ret;
	return 0;
}

static ssize_t buttons_read(struct file * file, char __user *data, size_t count, loff_t *loff){
	if(count != 1){
		printk(KERN_ERR "The driver can only give one key value once!\n");
		return -ENOMEM;
	}

	wait_event_interruptible(button_waitq, pressed);
	pressed = 0;

	if(copy_to_user(data, &key_val, 1)){
		printk(KERN_ERR "The driver can not copy the data to user area!\n");
		return -ENOMEM;
	}
	
	return 0;
}

static int buttons_close(struct inode *inode, struct file *file){
	free_irq(IRQ_EINT(0),  &key_descs[0]);
	free_irq(IRQ_EINT(1),  &key_descs[1]);	
	free_irq(IRQ_EINT(2),  &key_descs[2]);
	free_irq(IRQ_EINT(3),  &key_descs[3]);
	free_irq(IRQ_EINT(4),  &key_descs[4]);
	free_irq(IRQ_EINT(5),  &key_descs[5]);
	free_irq(IRQ_EINT(22), &key_descs[6]);
	free_irq(IRQ_EINT(23), &key_descs[7]);
	return 0;
}

struct file_operations buttons_ops = {
	.open    = buttons_open,
	.read    = buttons_read,
	.release = buttons_close,
};

int buttons_init(void){
	int ret;

	cdev_init(&cdev, &buttons_ops);
	cdev.owner = THIS_MODULE;

	ret = alloc_chrdev_region(&devno, 0, 1, "buttons");
	if(ret){
		printk(KERN_ERR "alloc char device region faild!\n");
		return ret;
	}

	ret = cdev_add(&cdev, devno, 1);
	if(ret){
		printk(KERN_ERR "add char device faild!\n");
		goto add_error;
	}

	buttons_class = class_create(THIS_MODULE, "buttonsdrv");
	if(IS_ERR(buttons_class)){
		printk(KERN_ERR "create class error!\n");
		goto class_error;
	}

	buttons_device = device_create(buttons_class, NULL, devno, NULL, "buttons");
	if(IS_ERR(buttons_device)){
		printk(KERN_ERR "create buttons device error!\n");
		goto device_error;
	}

	init_waitqueue_head(&button_waitq);

	return 0;

device_error:
	class_destroy(buttons_class);
class_error:
	cdev_del(&cdev);
add_error:
	unregister_chrdev_region(devno,1);

	return -ENODEV;
}

void buttons_exit(void){
	device_destroy(buttons_class, devno);
	class_destroy(buttons_class);
	cdev_del(&cdev);
	unregister_chrdev_region(devno, 1);
}

module_init(buttons_init);
module_exit(buttons_exit);
MODULE_LICENSE("GPL");

测试程序代码:

#include <stdio.h>
#include <fcntl.h>

int main(){
	int fd = open("/dev/buttons", O_RDWR);
	if(fd < 0){
		printf("open error");;
		return 0;
	}

	unsigned char key;
	while(1){
		read(fd, &key, 1);
		printf("The key = %x\n", key);
	}

	close(fd);
}

相比轮询方式的按键驱动程序,中断方式编写的按键驱动程序可以很大程度上节省CPU资源,因此,推荐使用中断方式。

但是,这种方式有个弊端,如果一直接收不到按键,程序就会永远阻塞在这里,幸运的是,linux内核提供了poll机制,可以设置延迟时间,如果在这个时间内受到按键消息则取得键值,反之则超时退出。使内核支持poll非常简单,为file_operations的poll成员提供poll处理函数即可。

使内核支持poll还需要以下几步:

添加poll头文件


编写poll处理函数:

static unsigned buttons_poll(struct file *file, poll_table *wait){
	unsigned int mask = 0;
	poll_wait(file, &button_waitq, wait);

	if (pressed)
		mask |= POLLIN | POLLRDNORM;

	return mask;
}

将poll处理函数添加给file_operations:

.poll    = buttons_poll,

这样,驱动程序就支持poll机制了。下面是poll方式的测试程序:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>

int main(int argc, char **argv){
	int fd;
	unsigned char key_val;
	int ret;

	struct pollfd fds[1];
	
	fd = open("/dev/buttons", O_RDWR);
	if (fd < 0){
		printf("can't open!\n");
	}

	fds[0].fd     = fd;
	fds[0].events = POLLIN;
	while (1){
		ret = poll(fds, 1, 5000);
		if (ret == 0){
			printf("time out\n");
		}
		else{
			read(fd, &key_val, 1);
			printf("key_val = 0x%x\n", key_val);
		}
	}
	
	return 0;
}

这样按键驱动程序就完成了。如果您在编写测试阶段发现了其他问题,欢迎留言讨论。

原文地址:https://www.cnblogs.com/xinyuyuanm/p/2987649.html