第四周学习笔记

学习笔记

1、三相异步电动机的旋转磁场

旋转磁场是由定子产生的,在定子上有三相绕组,分别接上频率相同、相位相差120°的交流电,从而在电流的作用下产生磁场。由于是交流电,电流会改变,从而导致磁场也发生变化。而旋转磁场的转速与频率和磁极对数有关。

2、三相异步电动机的工作原理

归根结底就是转子与定子产生的磁场相对运动,从而发生了切割磁感线的运动,从而产生电动势,出现电流。其中引入转差率来描述运行情况。

3、定子绕组的连接方式

主要为星形连接和三角形连接。要弄清楚线电压、线电流、相电压、相电流的关系。

4、电动机的模型

关于电动机的模型,主要根据老师给的modelica软件里的模型理解,对每个方程都理解了什么意思,虽然有些具体的值不会计算,但从宏观上有了理解。

5、三相异步电动机的机械特性

主要理解图像上的几个特殊点:空载工作点、额定工作点、启动工作点、临界工作点。

并同时需要理解人为机械特性:(1)降低电动机电压;(2)在定子电路串联电阻和电抗;(3)改变定子电源频率;(4)转子电路串接电阻

6、电动机的启动方法

(1)直接启动;(2)电阻或电抗器降压启动;(3)星三角降压启动;(4)自耦变压器降压启动;(5)软启动

7、关于三相异步电动机的调速方法和制动方法我还不是十分理解,得多找点书学习一下。

仿真作业

首先先选择好控制的方法。

对于启动方法,我选择的是自耦变压器降压启动。

对于调速方法,我选择的是变频调速。

对于制动方法,我选择的是反接制动。

对于具体的方法,主要是一个时间段一个时间段逐步分析,凑出相关的系数,比较繁琐。

model SACIM "A Simple AC Induction Motor Model"

type Voltage=Real(unit="V");

type Current=Real(unit="A");

type Resistance=Real(unit="Ohm");

type Inductance=Real(unit="H");

type Speed=Real(unit="r/min");

type Torque=Real(unit="N.m");

type Inertia=Real(unit="kg.m^2");

type Frequency=Real(unit="Hz");

type Flux=Real(unit="Wb");

type Angle=Real(unit="rad");

type AngularVelocity=Real(unit="rad/s");

constant Real Pi = 3.1415926;

 

 

Current i_A"A Phase Current of Stator";

Current i_B"B Phase Current of Stator";

Current i_C"C Phase Current of Stator";

Voltage u_A"A Phase Voltage of Stator";

Voltage u_B"B Phase Voltage of Stator";

Voltage u_C"C Phase Voltage of Stator";

Current i_a"A Phase Current of Rotor";

Current i_b"B Phase Current of Rotor";

Current i_c"C Phase Current of Rotor";

Frequency f_s"Frequency of Stator";

Torque Tm"Torque of the Motor";

Speed n"Speed of the Motor";

 

 

Flux Psi_A"A Phase Flux-Linkage of Stator";

Flux Psi_B"B Phase Flux-Linkage of Stator";

Flux Psi_C"C Phase Flux-Linkage of Stator";

Flux Psi_a"a Phase Flux-Linkage of Rotor";

Flux Psi_b"b Phase Flux-Linkage of Rotor";

Flux Psi_c"c Phase Flux-Linkage of Rotor";

 

 

Angle phi"Electrical Angle of Rotor";

Angle phi_m"Mechnical Angle of Rotor";

AngularVelocity w"Angular Velocity of Rotor";

 

 

Torque Tl"Load Torque";

Resistance Rs"Stator Resistance";

parameter Resistance Rr=0.408"Rotor Resistance";

parameter Inductance Ls = 0.00252"Stator Leakage Inductance";

parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";

parameter Inductance Lm = 0.00847"Mutual Inductance";

parameter Frequency f_N = 50"Rated Frequency of Stator";

parameter Voltage u_N = 220"Rated Phase Voltage of Stator";

parameter Real p =2"number of pole pairs";

parameter Inertia Jm = 0.1"Motor Inertia";

parameter Inertia Jl = 1"Load Inertia";

parameter Real K=0.8"starting rate";

parameter Real a=0.54"frequency rate";

parameter Real b=0.07"stable frequency rate";

parameter Real c=0.39"another frequency rate";

parameter Real P=0.7"stoping rate";

initial equation

 

 

Psi_A = 0;

Psi_B = 0;

Psi_C = 0;

Psi_a = 0;

Psi_b = 0;

Psi_c = 0;

phi = 0;

w = 0;

 

 

equation

u_A = Rs * i_A + 1000 * der(Psi_A);

u_B = Rs * i_B + 1000 * der(Psi_B);

u_C = Rs * i_C + 1000 * der(Psi_C);

 

 

0 = Rr * i_a + 1000 * der(Psi_a);

0 = Rr * i_b + 1000 * der(Psi_b);

0 = Rr * i_c + 1000 * der(Psi_c);

 

 

Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;

Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;

Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c;

 

 

Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;

Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c;

Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c;

Tm =-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

 

 

w = 1000 * der(phi_m);

phi_m = phi/p;

n= w*60/(2*Pi);

 

 

Tm-Tl = (Jm+Jl) * 1000 * der(w);

Tl = 15;

if time <= 100 then

u_A = 0;

u_B = 0;

u_C = 0;

f_s = 0;Rs = 0.531;

elseif time<=200 then

f_s = f_N*a; Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*K*a;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*K*a;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*K*a;

elseif time<=1900 then

f_s = f_N*a;Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

elseif time<=1970 then

f_s = f_N*a;Rs = 2;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

elseif time<=2860 then

f_s = f_N*a;Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

elseif time<=3460 then

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*b;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*b;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*b;

f_s = f_N*b;Rs = 0.531;

elseif time<=3540 then

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*K*c;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*K*c;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*K*c;

f_s = f_N*K*c;Rs = 0.531;

elseif time<=4900 then

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*c;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*c;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*c;

f_s = f_N*c;Rs = 0.531;

elseif time<=5000 then

f_s = f_N*P*a;Rs = 2;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a*P;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a*P;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a*P;

elseif time<=5950 then

f_s = f_N*a;Rs = 0.531;

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*a;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*a;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*a;

else

u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*b;

u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*b;

u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*b;

f_s = f_N*b;Rs = 0.531;

end if;

end SACIM;

原文地址:https://www.cnblogs.com/xiaoxiaoxiaohan/p/5299875.html