线程池ThreadPoolExecutor

1、线程池的处理流程(execute方法)
当向线程池提交一个任务后,其经历的流程如下:
1)、如果当前线程数小于核心线程数(corePoolSize),则创建新线程来执行该任务;
2)、如果当前线程数不小于,即等于或大于核心线程数(corePoolSize),则将任务添加到阻塞队列(BlockingQueue)中;
3)、如果阻塞队列中的任务已满,且此时线程数小于最大线程数(maximumPoolSize)时,则创建新线程来执行该任务;
4)、执行对应的任务策略,一般是拒绝任务,抛出异常。

2、任务策略:
1)、抛出异常
    ThreadPoolExecutor.AbortPolicy()
2)、丢弃当前的任务
    ThreadPoolExecutor.DiscardPolicy()
3)、丢弃老的任务
    ThreadPoolExecutor.DiscardOldestPolicy()
4)、重试添加当前的任务
    ThreadPoolExecutor.CallerRunsPolicy()

3、线程池源码分析
1)、若干变量
    
    //将工作线程数和线程池状态放在一个int类型变量中存储而设置的一个原子类型的变量
    //故在ctl中,低29位是用于表示工作线程数,高位用于表示线程池状态,如RUNNING、SHUTDOWN等。
    //故一个线程池中最多有工作线程的个数为(2^29) - 1
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    //低29位
    private static final int COUNT_BITS = Integer.SIZE - 3;
    //线程池中最大的工作线程数
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    //线程池状态,用高3位表示
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    //获取当前线程池的状态
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    //获取当前线程池中的工作线程数
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    //组合当前线程池状态和工作线程数为一个int类型的变量
    private static int ctlOf(int rs, int wc) { return rs | wc; }


2)、execute()方法


public void execute(Runnable command) {
        //当提交的任务为null时,则抛出空指针异常
        if (command == null)
            throw new NullPointerException();
        //获取当前线程池用于记录状态和工作线程数的变量
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            //检测当前线程池中的工作线程数小于核心线程数时,则直接创建新线程,执行任务
            if (addWorker(command, true))
                return;
            //当创建新线程失败时,需要重新获取用于记录状态和工作线程数的变量
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
             //当前线程池是运行状态,且将任务添加到阻塞队列中成功时
            //再次获取用于记录状态和工作线程数的变量
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                //当前线程池不是运行状态,且删除成功时,使用任务策略
                reject(command);
            else if (workerCountOf(recheck) == 0)
                //当前工作线程数为0时,直接添加空任务
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            //阻塞队列已满且当前工作线程数小于最大线程数时,则直接创建线程,执行任务
            //若还失败,则直接使用任务策略
            reject(command);
    }


 private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            //获取当前线程池的状态
            int rs = runStateOf(c);

            //检测当前线程池是否处于关闭状态
            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                //获取当前线程池的工作线程数
                int wc = workerCountOf(c);
                //如果超过了限制,则返回false
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                //通过CAS增加一个工作线程
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                //再次获取用于标记线程池状态和记录工作线程数的变量,并比对当前状态是否一直,若不是,则继续外环循环,否则继续内环循环
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            final ReentrantLock mainLock = this.mainLock;
            //新建一个工作线程
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                mainLock.lock();
                //加锁
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int c = ctl.get();
                    int rs = runStateOf(c);

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        //将工作线程添加到线程集合Set中
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    //工作线程开始启动,执行提交的任务
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

    //工作线程的构造方法
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }
    //线程执行体
        /** Delegates main run loop to outer runWorker  */
        public void run() {
            //调用父类的runWorker方法
            runWorker(this);
        }


    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            //不断的从任务队列中获取任务,并执行
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                //线程是否中断关闭
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    //任务执行前的执行方法
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        //执行任务
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        //任务执行或的执行方法
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

//调用该方法后,该线程池不会再接受新任务,当已经存在的任务执行完毕后,线程池就会关闭
void shutdown()

//调用该方法后,该线程池会尝试关闭现有的线程,直到所有的线程都关闭,线程池就会关闭
List<Runnable> shutdownNow()

4、常用的线程池
1)、固定大小线程的线程池 newFixedThreadPool
2)、单一线程的线程池,当线程发生异常结束时,则会另外创建一个新的线程,以保持线程池自始至终只有一个线程 newSingleThreadExecutor
3)、无限制线程数的线程池,当空闲线程超过空闲时间时(默认1分钟),线程会被回收 newCachedThreadPool



5、阻塞队列

 //往队列中添加元素,成功返回true,失败抛出异常
 boolean add(E e)
 
 //往队列中添加元素,成功返回true,失败返回false 
 boolean offer(E e)
 
 //往队列中添加元素,在指定的时间内若是添加不了,则返回false,否则返回true
 boolean offer(E e, long timeout, TimeUnit unit)

 //有阻塞的添加元素,即肯定能将元素添加到队列中,但是可能一直被阻塞
 void put(E e) throws InterruptedException

 //获取队列中的首元素,没有返回null
 E poll()

 //获取队列中的首元素,在指定的时间内若是获取不到,则返回null
 E poll(long timeout, TimeUnit unit) 

 //获取队列中的首元素,当队列中没有元素时,则一直阻塞,直到有元素时,才返回首元素
 E take()
原文地址:https://www.cnblogs.com/xiaoxian1369/p/5403885.html