母函数

在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法。

母函数可分为很多种,包括普通母函数指数母函数、L级数、贝尔级数和狄利克雷级数。对每个序列都可以写出以上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的特性和问题的类型。

这里先给出两句话,不懂的可以等看完这篇文章再回过头来看:

1.“把组合问题的加法法则和幂级数的乘幂对应起来”

2.“母函数的思想很简单 — 就是把离散数列和幂级数一 一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造. “

我们首先来看下这个多项式乘法:

母函数图(1)

由此可以看出:

1.x的系数是a1,a2,…an 的单个组合的全体。

2. x^2的系数是a1,a2,…a2的两个组合的全体。

………

n. x^n的系数是a1,a2,….an的n个组合的全体(只有1个)。

进一步得到:

母函数图(2)

母函数的定义

对于序列a0,a1,a2,…构造一函数:

母函数图(3)

称函数G(x)是序列a0,a1,a2,…的母函数。

这里先给出2个例子,等会再结合题目分析:

第一种:

有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?

考虑用母函数来解决这个问题:

我们假设x表示砝码,x的指数表示砝码的重量,这样:

1个1克的砝码可以用函数1+1*x^1表示,

1个2克的砝码可以用函数1+1*x^2表示,

1个3克的砝码可以用函数1+1*x^3表示,

1个4克的砝码可以用函数1+1*x^4表示,

上面这四个式子懂吗?

我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就是一个质量为2的砝码。

那么前面的1表示什么?按照上面的理解,1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。

所以这里1+1*x^2 = 1*x^0 + 1*x^2,即表示2克的砝码有两种状态,不取或取,不取则为1*x^0,取则为1*x^2

不知道大家理解没,我们这里结合前面那句话:

“把组合问题的加法法则和幂级数的乘幂对应起来“

接着讨论上面的1+x^2,这里x前面的系数有什么意义?

这里的系数表示状态数(方案数)

1+x^2,也就是1*x^0 + 1*x^2,也就是上面说的不取2克砝码,此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)

所以,前面说的那句话的意义大家可以理解了吧?

几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:

(1+x)(1+x^2)(1+x^3)(1+x^4)

=(1+x+x^2+x^4)(1+x^3+^4+x^7)

=1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10

从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)

例如右端有2^x^5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。

故称出6克的方案数有2种,称出10克的方案数有1种 。


接着上面,接下来是第二种情况:

第二种:

求用1分、2分、3分的邮票贴出不同数值的方案数:

大家把这种情况和第一种比较有何区别?第一种每种是一个,而这里每种是无限的。

母函数图(4)

以展开后的x^4为例,其系数为4,即4拆分成1、2、3之和的拆分方案数为4;

即 :4=1+1+1+1=1+1+2=1+3=2+2

这里再引出两个概念"整数拆分"和"拆分数":

所谓整数拆分即把整数分解成若干整数的和(相当于把n个无区别的球放到n个无标志的盒子,盒子允许空,也允许放多于一个球)。

整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数。

现在以上面的第二种情况每种种类个数无限为例,给出模板:

[cpp] view plain copy
 
  1. #include <iostream>  
  2. using namespace std;  
  3. // Author: Tanky Woo  
  4. // www.wutianqi.com  
  5. const int _max = 10001;   
  6. // c1是保存各项质量砝码可以组合的数目  
  7. // c2是中间量,保存每一次的情况  
  8. int c1[_max], c2[_max];     
  9. int main()  
  10. {   //int n,i,j,k;  
  11.     int nNum;   //   
  12.     int i, j, k;  
  13.   
  14.     while(cin >> nNum)  
  15.     {  
  16.         for(i=0; i<=nNum; ++i)   // ---- ①  
  17.         {  
  18.             c1[i] = 1;  
  19.             c2[i] = 0;  
  20.         }  
  21.         for(i=2; i<=nNum; ++i)   // ----- ②  
  22.         {  
  23.   
  24.             for(j=0; j<=nNum; ++j)   // ----- ③  
  25.                 for(k=0; k+j<=nNum; k+=i)  // ---- ④  
  26.                 {  
  27.                     c2[j+k] += c1[j];  
  28.                 }  
  29.                 for(j=0; j<=nNum; ++j)     // ---- ⑤  
  30.                 {  
  31.                     c1[j] = c2[j];  
  32.                     c2[j] = 0;  
  33.                 }  
  34.         }  
  35.         cout << c1[nNum] << endl;  
  36.     }  
  37.     return 0;  
  38. }  
原文地址:https://www.cnblogs.com/xiaotian-222/p/5436588.html